İN VİTRO DERİ MODELLERİ

Amaç: Topikal veya sistemik etki sağlamak için deriye uygulanan formülasyonların tasarımında ve optimizasyonunda deri modellerinin kullanımı büyük önem taşımaktadır. Etken maddelerin deriden penetrasyon / permeasyon çalışmalarında sıçan veya domuz derisi sıklıkla kullanılmakta ancak hayvan derisinden elde edilen sonuçların insan derisi ile uygunluğu sorgulanmaktadır. Diğer taraftan insan derisinin kullanımı ise, temininin genellikle zor olması ve etik kaygılar nedeniyle sınırlıdır. Bu durum, in vitro deriden permeasyon testlerinin önemini artırmaktadır. Bu derlemede, en sık kullanılan in vitro deri modellerinin avantajları ve dezavantajları vurgulanarak, bu modeller ile gerçekleştirilen güncel çalışmalar incelenmiştir.

IN VITRO SKIN MODELS

Objective: The use of skin models is of great importance in the design and optimization of formulations applied to the skin for topical or systemic effects. Although rat or pig skin is often used in skin penetration/permeation studies of active substances, the compatibility of results obtained from animal skin and human skin is questioned. On the other hand, the use of human skin is limited since it is difficult to attain and due to the ethical concerns. This situation increases the importance of in vitro skin permeation tests. In this review, the advantages and disadvantages of the most commonly used in vitro skin models were emphasized, and current studies performed with these models were reviewed.

___

  • 1. Lam, P.L., Gambari, R., (2014). Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries. Journal of Controlled Release, 178, 25–45. [CrossRef]
  • 2. Flaten, G. E., Palac, Z., Engesland, A., Filipović-Grčić, J., Vanić, Ž., Škalko-Basnet, N. (2015). In vitro skin models as a tool in optimization of drug formulation. European Journal of Pharmaceutical Sciences, 75, 10-24. [CrossRef]
  • 3. Franz, T. J. (1975). Percutaneous absorption. On the relevance of in vitro data. Journal of Investigative Dermatology, 64(3), 190-195. [CrossRef]
  • 4. Barbero, A. M., Frasch, H. F. (2009). Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review. Toxicology In Vitro, 23(1), 1-13. [CrossRef]
  • 5. Semlin, L., Schäfer-Korting, M., Borelli, C., Korting, H. C. (2011). In vitro models for human skin disease. Drug Discovery Today, 16(3-4), 132-139. [CrossRef]
  • 6. Schmook, F.P., Meingassner, J.G., Billich, A., (2001). Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. International Journal of Pharmaceutics, 215, 51–56. [CrossRef]
  • 7. Vallet, V., Cruz, C., Josse, D., Bazire, A., Lallement, G., Boudry, I., (2007). In vitro percutaneous penetration of organophosphorus compounds using full-thickness and splitthickness pig and human skin. Toxicology In Vitro, 21, 1182–1190. [CrossRef]
  • 8. Luo, L., Patel, A., Sinko, B., Bell, M., Wibawa, J., Hadgraft, J., Lane, M.E. (2016). A comparative study of the in vitro permeation of ibuprofen in mammalian skin, the PAMPA model and silicone membrane. International Journal of Pharmaceutics, 505, 14–19. [CrossRef]
  • 9. Yoshimatsu, H., Ishii, K., Konno, Y., Satsukawa, M., Yamashita, S. (2017). Prediction of human percutaneous absorption from in vitro and in vivo animal experiments. International Journal of Pharmaceutics, 534, 348–355. [CrossRef]
  • 10. Badıllı, U., Tuba Şengel-Türk, C., Amasya, G., Tarımcı, N. (2017). Novel drug delivery system for dermal uptake of etofenamate: Semisolid SLN dispersion. Current Drug Delivery, 14(3), 386-393. [CrossRef]
  • 11. Gümüştaş, M., Tuba Şengel-Türk, C., Badıllı, U., Amasya, G., Özkan, S. A., Tarımcı, N. (2017). Optimization of stability indicating LC method for the sensitive in vitro determination from Solid Lipid Nanoparticles and ex vivo analysis from rat skin of etofenamate. Current Pharmaceutical Analysis, 13(1), 63-71. [CrossRef]
  • 12. Amasya, G., Gümüştaş, M., Badıllı, U., Özkan, S. A., Tarımcı, N. (2018). Development of a HILIC method for the determination of 5-fluorouracil from nano drug delivery systems and rat skin extracts. Journal of Pharmaceutical and Biomedical Analysis, 154, 285-293. [CrossRef]
  • 13. Amasya, G., Aksu, B., Badıllı, U., Onay-Beşikçi, A., Tarımcı, N. (2019). QbD guided early pharmaceutical development study: production of lipid nanoparticles by high pressure homogenization for skin cancer treatment. International Journal of Pharmaceutics, 563, 110- 121. [CrossRef]
  • 14. Kumar, P., Singh, S. K., Mishra, D. N., Girotra, P. (2015). Enhancement of ketorolac tromethamine permeability through rat skin using penetration enhancers: An ex-vivo study. International Journal of Pharmaceutical Investigation, 5(3), 142. [CrossRef]
  • 15. MacNeil, S. (2007). Progress and opportunities for tissue-engineered skin. Nature, 445(7130), 874-880. [CrossRef]
  • 16. European Commission. (2003). Draft of technical guidance document. 2nd ed. European Chemicals Bureau
  • 17. EMA-CHMP. Draft Guideline on Quality and Equivalence of Topical Products. European Medicines Agency; Amsterdam, The Netherlands: (2018). s. 1–36. Erişim: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-quality- equivalence-topical-products_en.pdf. Erişim Tarihi: 12.03.2021
  • 18. Hadgraft, J. (2001). Skin, the final frontier. International Journal of Pharmaceutics, 224, 1–18. [CrossRef]
  • 19. Montagna W, Parakkal PF. (2012) The Structure and Function of Skin. 3rd ed. New York: Academic Press
  • 20. Roberts MS, Cross SE, Pellett MA, Walters KA. (2002). Skin transport. In: Walters KA, Editor. Dermatological and Transdermal Formulations, (pp. 89–196). New York: Marcel Dekker.
  • 21. Baroni, A., Buommino, E., De Gregorio, V., Ruocco, E., Ruocco, V., Wolf, R. (2012). Structure and function of the epidermis related to varrier properties. Clinics in Dermatology, 30, 257–262. [CrossRef]
  • 22. Menon, G.K., Cleary, G.W., Lane, M.E. (2012). The structure and function of thestratum corneum. International Journal of Pharmaceutics, 435, 3–9. [CrossRef]
  • 23. Andrews, S.N., Jeong, E., Prausnitz, M.R. (2013). Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharmaceutical Research, 30, 1099–1109. [CrossRef]
  • 24. Bolzinger, M.-A., Briançon, S., Pelletier, J., Chevalier, Y. (2012). Penetration of drugs through skin, a complex-rate controlling membrane. Current Opinion in Colloid and Interface Science, 17, 156–165. [CrossRef]
  • 25. Schaefer, U.F., Hansen, S., Schneider, M., Luengo Contreras, J., Lehr, C.M. (2008). Models for skin absorption and skin toxicity testing. In: Kim, K., Ehrhardt, K.-J. (Eds.), Drug Absorption Studies, (pp. 3–33. New York: Springer.
  • 26. Chittenden, J.T., Brooksm, J.D., Riviere, J.E. (2014). Development of a mixed-effect pharmacokinetic model for vehicle modulated in vitro transdermal flux of topically applied penetrants. Journal of Pharmaceutical Sciences, 103, 1002–1012. [CrossRef]
  • 27. Souto, E.B. (2005). PhD Thesis. SLN and NLC for Topical Delivery of Antifungals. Institut of Pharmacy, Freie Universität, Berlin.
  • 28. Van Gele, M., Geusens, B., Brochez, L., Speeckaert, R., Lambert, J. (2011). Three-dimensional skin models as tools for transdermal drug delivery: challenges and limitations. Expert Opinion on Drug Delivery, 8(6), 705-720. [CrossRef]
  • 29. Oliveira, G., Beezer, A.E., Hadgraft, J., Lane, M.E. (2011). Alcohol enhanced permeation in model membranes. Part II. Thermodynamic analysis of membrane partitioning. International Journal of Pharmaceutics, 420, 216–222. [CrossRef]
  • 30. Oliveira, G., Hadgraft, J., Lane, M. E. (2012). The influence of volatile solvents on transport across model membranes and human skin. International Journal of Pharmaceutics, 435(1), 38- 49. [CrossRef]
  • 31. de Jager, M., Groenink, W., Bielsa, I., Guivernau, R., Andersson, E., Angelova, N., Ponec, M., Bouwstra, J. (2006). A novel in vitro percutaneous penetration model: evaluation of barrier properties with p-aminobenzoic acid and two of its derivatives. Pharmaceutical Research, 23, 951–960. [CrossRef]
  • 32. Albery, W.J., Burke, J.F., Leffler, E.B., Hadgraft, J. (1976). Interfacial transfer studied with a rotating diffusion cell. Journal of the Chemical Societ, Faraday Transactions 1 72, 1618–1626. 27 Nisan 2021’de alındı, https://pubs.rsc.org/en/content/articlelanding/1976/F1/F19767201618
  • 33. Guy, R.H., Fleming, R. (1979). The estimation of diffusion coefficients using the rotating diffusion cell. International Journal of Pharmaceutics, 3, 143–149. [CrossRef]
  • 34. Dias, M., Hadgraft, J., Lane, M.E. (2007). Influence of membrane-solvent-solute interactions on solute permeation in model membranes. International Journal of Pharmaceutics, 336(1), 108–114. [CrossRef]
  • 35. Santos, P., Machado, M., Watkinson, A.C., Hadgraft, J., Lane, M.E. (2009). The effect of drug concentration on solvent activity in silicone membranes. International Journal of Pharmaceutics, 377(1–2), 70–75. [CrossRef]
  • 36. Oliveira, G., Hadgraft, J., Lane, M.E. (2012). The role of vehicle interactions on permeation of an active through model membranes and human skin. International Journal of Cosmetic Science, 34, 536–545. [CrossRef]
  • 37. Ng, S. F., Rouse, J. J., Sanderson, F. D., Eccleston, G. M. (2012). The relevance of polymeric synthetic membranes in topical formulation assessment and drug diffusion study. Archives of Pharmacal Research, 35(4), 579-593. [CrossRef]
  • 38. Ng, S. F., Rouse, J., Sanderson, D., Eccleston, G. (2010). A comparative study of transmembrane diffusion and permeation of ibuprofen across synthetic membranes using Franz diffusion cells. Pharmaceutics, 2(2), 209-223. [CrossRef]
  • 39. Loftsson, T., Konradsdottir, F., Masson, M. (2006). Development and evaluation of an artificial membrane for determination of drug availability. International Journal of Pharmaceutics, 326, 60–68. [CrossRef]
  • 40. Oliveira, G., Beezer, A.E., Hadgraft, J., Lane, M.E. (2010). Alcohol enhanced permeation in model membranes. Part I. Thermodynamic and kinetic analyses of membrane permeation. International Journal of Pharmaceutics, 393, 61–67. [CrossRef]
  • 41. Ottaviani, G., Martel, S., Carrupt, P.A. (2006). Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability. Journal of Medicinal Chemistry, 49, 3948–3954. [CrossRef]
  • 42. Nakano, M., Patel, N. K. (1970). Release, uptake, and permeation behavior of salicylic acid in ointment bases. Journal of Pharmaceutical Sciences, 59(7), 985-988. [CrossRef]
  • 43. Watkinson, R.M., Guy, R.H., Hadgraft, J., Lane, M.E. (2009). Optimisation of cosolvent concentration for topical drug delivery II: influence of propylene glycol on ibuprofen permeation. Skin Pharmacology and Physiology, 22, 225–230. [CrossRef]
  • 44. Watkinson, R.M., Herkenne, C., Guy, R.H., Hadgraft, J., Oliveira, G., Lane, M.E. (2009). Influence of ethanol on the solubility, ionization and permeation characteristics of ibuprofen in silicone and human skin. Skin Pharmacology and Physiology, 22, 15–21. [CrossRef]
  • 45. Watkinson, R.M., Guy, R.H., Oliveira, G., Hadgraft, J., Lane, M.E., (2011). Optimisation of cosolvent concentration for topical drug delivery III – influence of lipophilic vehicles on ibuprofen permeation. Skin Pharmacology and Physiology, 24, 22–26. [CrossRef]
  • 46. Miki, R., Ichitsuka, Y., Yamada, T., Kimura, S., Egawa, Y., Seki, T., Juni, K., Ueda, H., Morimoto, Y., (2015). Development of a membrane impregnated with a poly(dimethylsiloxane)/poly(ethylene glycol) copolymer for a highthroughput screening of the permeability of drugs, cosmetics, and other chemicals across the human skin. European Journal of Pharmaceutical Sciences, 66, 41–49. [CrossRef]
  • 47. Joshi, V., Brewster, D., Colonero, P., (2012). Transdermal diffusion. In vitro diffusion studies in transdermal research: a synthetic membrane model in place of human skin. Drug Development and Delivery, 12, 40–42. 10 Haziran, 2021’de alındı, https://drug-dev.com/in- vitro-diffusion-studies-in-transdermal-research-a-synthetic-membrane-model-in-place-of- human-skin/
  • 48. Merck. (2012). Millipore. Strat-MTM Membrane: A Synthetic Transdermal Diffusion Test Model. Millipore Corporation, Darmstadt, German. Erişim: http:// www.in- cosmetics.com/__novadocuments/61173?v=635459653141970000. Erişim Tarihi: 12.03.2021
  • 49. Haq, A., Goodyear, B., Ameen, D., Joshi, V., Michniak-Kohn, B. (2018). Strat-M® synthetic membrane: Permeability comparison to human cadaver skin. International Journal of Pharmaceutics, 547(1-2), 432-437. [CrossRef]
  • 50. Kaur, L., Singh, K., Paul, S., Singh, S., Singh, S., Jain, S. K. (2018). A mechanistic study to determine the structural similarities between artificial membrane Strat-M™ and biological membranes and its application to carry out skin permeation study of amphotericin B nanoformulations. AAPS Pharmscitech, 19(4), 1606-1624. [CrossRef]
  • 51. Simon, A., Amaro, M. I., Healy, A. M., Cabral, L. M., de Sousa, V. P. (2016). Comparative evaluation of rivastigmine permeation from a transdermal system in the Franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation. International Journal of Pharmaceutics, 512(1), 234-241. [CrossRef]
  • 52. Uchida, T., Kadhum, W. R., Kanai, S., Todo, H., Oshizaka, T., Sugibayashi, K. (2015). Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M™. European Journal of Pharmaceutical Sciences, 67, 113-118. [CrossRef]
  • 53. Kansy, M., Senner, F., Gubernator, K. (1998). Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. Journal of Medicinal Chemistry, 41(7), 1007-1010. [CrossRef]
  • 54. Faller, B. (2008). Artificial membrane assays to assess permeability. Current Drug Metabolism, 9(9), 886-892. [CrossRef]
  • 55. Bujard, A., Sol, M., Carrupt, P.-A., Martel, S. (2014). Predicting both passive intestinal absorption and the dissociation constant toward albumin using the PAMPA technique. European Journal of Pharmaceutical Sciences, 63, 36–44. [CrossRef]
  • 56. Di, L., Kerns, E.H., Bezar, I.F., Petusky, S.L., Huang, Y. (2009). Comparison of blood–brain barrier permeability assays: in situ brain perfusion, MDR1-MDCKII and PAMPA-BBB. Journal of Pharmaceutical Sciences, 98, 1980–1991. [CrossRef]
  • 57. Sinko, B., Kokosi, J., Avdeef, A., Takacs-Novak, K. (2009). A PAMPA study of the permeability-enhancing effect of new ceramide analogues. Chemistry and Biodiversity, 6, 1867– 1874. [CrossRef]
  • 58. Sinko, B., Garrigues, T.M., Balogh, G.T., Nagy, Z.K., Tsinman, O., Avdeef, A., Takacs- Novak, K. (2012). Skin-PAMPA: a new method for fast prediction of skin penetration. European Journal of Pharmaceutical Sciences, 45, 698–707. [CrossRef]
  • 59. Tsinman, K., Sinko, B. (2013). A high throughput method to predict skin penetration and screen topical formulations. Cosmetic Toiletries, 128, 192–199. 1 Mayıs 2021’de alındı, https://www.cosmeticsandtoiletries.com/testing/invivo/premium-A-High-Throughput-Method- to-Predict-Skin-Penetration-and-Screen-Topical-Formulations-201519931.html
  • 60. Vizserálek, G., Berkó, S., Tóth, G., Balogh, R., Budai-Szűcs, M., Csányi, E., Sinkó, B., Takács- Novák, K. (2015). Permeability test for transdermal and local therapeutic patches using Skin PAMPA method. European Journal of Pharmaceutical Sciences, 76, 165–172. [CrossRef]
  • 61. Balazs, B., Vizserálek, G., Berkó, S., Budai-Szűcs, M., Kelemen, A., Sinkó, B., Takács- Novák, K., Szabó-Révész, P., Csányi, E. (2016). Investigation of the efficacy of transdermal penetration enhancers through the use of human skin and a skin mimic artificial membrane. Journal of Pharmaceutical Sciences, 105, 1134–1140. [CrossRef]
  • 62. Karadzovska, D., Riviere, J.E. (2013). Assessing vehicle effects on skin absorption using artificial membrane assays. European Journal of Pharmaceutical Sciences, 50, 569–576. [CrossRef]
  • 63. Zhang, Y., Lane, M. E., Hadgraft, J., Heinrich, M., Chen, T., Lian, G., Sinko, B. (2019). A comparison of the in vitro permeation of niacinamide in mammalian skin and in the Parallel Artificial Membrane Permeation Assay (PAMPA) model. International Journal of Pharmaceutics, 556, 142-149. [CrossRef]
  • 64. Kerns, E. H., Di, L., Petusky, S., Farris, M., Ley, R., Jupp, P. (2004). Combined application of parallel artificial membrane permeability assay and Caco-2 permeability assays in drug discovery. Journal of Pharmaceutical Sciences, 93(6), 1440-1453. [CrossRef]
  • 65. Avdeef, A. (2005). The rise of PAMPA. Expert Opinion on Drug Metabolism and Toxicology, 1(2), 325-342. [CrossRef]
  • 66. Flaten, G.E., Bunjes, H., Luthman, K., Brandl, M. (2006). Drug permeability across a phospholipid vesicle based barrier 2. Characterization of barrier structure, storage stability and stability towards pH changes. European Journal of Pharmaceutical Sciences, 28, 336– 343. [CrossRef]
  • 67. Flaten, G.E., Awoyemi, O., Luthman, K., Brandl, M., Massing, U. (2009). The Phospholipid Vesicle-based Permeability Assay: 5. Development Towards an Automated Procedure for High Throughput Permeability Screening. JALA: Journal of the Association for Laboratory Automation, s. 12–21. [CrossRef]
  • 68. Engesland, A., Skar, M., Hansen, T., Škalko-Basnet, N., Flaten, G.E. (2013). New applications of phospholipid vesicle-based permeation assay: permeation model mimicking skin barrier. Journal of Pharmaceutical Sciences, 102, 1588–1600. [CrossRef]
  • 69. Palac, Z., Engesland, A., Flaten, G.E., Škalko-Basnet, N., Filipovic ́- Grčić, J., Vanic ́, Zˇ. (2014). Liposomes for (trans)dermal drug delivery: the skin-PVPA as a novel in vitro stratum corneum model in formulation development. Journal of. Liposome Research, 24, 313–322. [CrossRef]
  • 70. Shakel, Z., Nunes, C., Lima, S. A. C., Reis, S. (2019). Development of a novel human stratum corneum model, as a tool in the optimization of drug formulations. International Journal of Pharmaceutics, 569, 118571. [CrossRef]
  • 71. Moniz, T., Lima, S. A. C., Reis, S. (2020). Application of the Human stratum corneum lipid- based mimetic model in assessment of drug-loaded nanoparticles for skin administration. International Journal of Pharmaceutics, 591, 119960. [CrossRef]
  • 72. Ma, M., Di, H. J., Zhang, H., Yao, J. H., Dong, J., Yan, G. J., Chen, J. (2017). Development of phospholipid vesicle-based permeation assay models capable of evaluating percutaneous penetration enhancing effect. Drug Development and Industrial Pharmacy, 43 (12), 2055-2063. [CrossRef]
  • 73. Engesland, A., Škalko-Basnet, N., Flaten, G.E. (2015). PVPA and EpiSkin® in assessment of drug therapies destined for skin administration. Journal of Pharmaceutical Sciences, 104 (3), 1119–1127. [CrossRef]
  • 74. Ponec, M. (1992). In vitro cultured human skin cells as alternatives to animals for skin irritancy screening. International Journal of Cosmetic Science, 14 (6), 245-264. [CrossRef]
  • 75. Godin, B., Touitou, E. (2007). Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Advanced Drug Delivery Reviews, 59, 1152–1161. [CrossRef]
  • 76. Netzlaff, F., Lehr, C.-M., Wertz, P.W., Schaefer, U.F., (2005). The human epidermis models EpiSkin, SkinEthic and EpiDerm: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. European Journal of Pharmaceutics and Biopharmaceutics, 60, 167–178. [CrossRef]
  • 77. Ponec, M., Boelsma, E., Gibbs, S., Mommaas, M. (2002). Characterization of reconstructed skin models. Skin Pharmacology and Physiology, 15 (Suppl. 1), 4-17. [CrossRef]
  • 78. Episkin Laboratories. Erişim: https://www.episkin.com/SkinEthic-RHE Erişim Tarihi: 10.03.2021.
  • 79. MatTek Laboratories Erişim: https://www.mattek.com/products/epidermft/ Erişim Tarihi: 10.03.2021.
  • 80. Netzlaff, F., Schaefer, U.F., Lehr, C.-M., Meiers, P., Stahl, J., Kietzmann, M., Niedorf, F., (2006). Comparison of bovine udder skin with human and porcine skin in percutaneous permeation experiments. Alternatives to Laboratory Animals: ATLA, 34, 499–513. 9 Mayıs 2021’de alındı, https://www.researchgate.net/publication/6677538_Comparison_of_bovine_udder_skin_with_ human_and_porcine_skin_in_percutaneous_permeation_experiments
  • 81. Schäfer-Korting M, Bock U, Diembeck W. (2008). The use of reconstructed human epidermis for skin absorption testing: results of the validation study. Alternatives to Laboratory Animals: ATLA, 36 (2), 161–187. [CrossRef]
  • 82. Schäfer-Korting M, Bock U, Gamer A. (2006). Reconstructed human epidermis for skin absorption testing: results of the German prevalidation study. Alternatives to Laboratory Animals: ATLA, 34, 283-94. [CrossRef]
  • 83. Dreher, F., Fouchard, F., Patouillet, C., Andrian, M., Simonnet, J. T., Benech-Kieffer, F. (2002). Comparison of cutaneous bioavailability of cosmetic preparations containing caffeine or α- tocopherol applied on human skin models or human skin ex vivo at finite doses. Skin Pharmacology and Physiology, 15(Suppl. 1), 40-58. [CrossRef]
  • 84. Labouta, H.I., Thude, S., Schneider, M. (2013). Setup for investigating gold nanoparticle penetration through reconstructed skin and comparison to published human skin data. Journal of Biomedical Optics, 18, 061218. [CrossRef]
  • 85. Lotte, C., Patouillet, C., Zanini, M., Messager, A., Roguet, R. (2002). Permeation and skin absorption: reproducibility of various industrial reconstructed human skin models. Skin Pharmacology and Physiology, 15(Suppl. 1), 18-30. [CrossRef]
  • 86. Bando, H., Mohri, S., Yamashita, F., Takakura, Y., Hashida, M. (1997). Effects of skin metabolism on percutaneous penetration of lipophilic drugs. Journal of Pharmaceutical Sciences, 86 (6), 759-761. [CrossRef]
  • 87. Gysler, A., Kleuser, B., Sippl, W., Lange, K., Korting, H. C., Höltje, H. D., Schäfer-Korting, M. (1999). Skin penetration and metabolism of topical glucocorticoids in reconstructed epidermis and in excised human skin. Pharmaceutical Research, 16(9), 1386-1391. [CrossRef]
  • 88. Mahmoud, A., Haberland, A., Dürrfeld, M., Heydeck, D., Wagner, S., Schäfer-Korting, M. (2005). Cutaneous estradiol permeation, penetration and metabolism in pig and man. Skin Pharmacology and Physiology, 18(1), 27-35. [CrossRef]
  • 89. Slivka, S. R. (1992). Testosterone metabolism in an in vitro skin model. Cell Biology and Toxicology, 8(4), 267-276. [CrossRef]
  • 90. Planz, V., Lehr, C. M., Windbergs, M. (2016). In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. Journal of Controlled Release, 242, 89-104. [CrossRef]
  • 91. Ackermann, K., Borgia, S. L., Korting, H. C., Mewes, K. R., Schäfer-Korting, M. (2010). The Phenion® full-thickness skin model for percutaneous absorption testing. Skin Pharmacology and Physiology, 23(2), 105-112. [CrossRef]
  • 92. Henkel Laboratories Erişim: https://www.phenion.com/products/reconstructed-tissues Erişim Tarihi: 11.03.2021.
  • 93. De Wecer, B., Petersohn, D., Mewes, K. R. (2013). Overview of human three-dimensional (3D) skin models used for dermal toxicity assessment. HPC Today, 8, 18-22. 2 Mayıs 2021’de alındı, https://www.teknoscienze.com/Contents/Riviste/PDF/tutto_HPC1_2013_RGB_20-25.pdf
  • 94. Neupane, R., Boddu, S. H., Renukuntla, J., Babu, R. J., Tiwari, A. K. (2020). Alternatives to biological skin in permeation studies. Current Trends and Possibilities. Pharmaceutics, 12(2), 152. [CrossRef
  • 95. Abd, E., Yousef, S. A., Pastore, M. N., Telaprolu, K., Mohammed, Y. H., Namjoshi, S., Roberts, M. S. (2016). Skin models for the testing of transdermal drugs. Clinical Pharmacology: Advances and Applications, 8, 163. [CrossRef]
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi
Sayıdaki Diğer Makaleler

BİR SPEKTROFOTOMETRİK İKİLİ KARIŞIM ANALİZİNİN DOĞRULAMA ÇALIŞMASI

Özgür ÜSTÜNDAĞ, Erdal DİNÇ

GLYCYRRHIZA GLABRA'NIN BAZI TIBBİ ÖZELLİKLERİ (MEYAN KÖKÜ)

Falah Saleh MOHAMMED, Nuh KORKMAZ, Mehmet DOĞAN, Ali Erdem ŞABİK, Mustafa SEVİNDİK

ALOE VERA (L.) BURM. F. (SARISABIR) BİTKİSİNİN FİTOTERAPİDE KULLANIMI

Hilal Ahsen TUNÇAY, Gülen İrem KAYA

TIP VE ECZACILIK ALANINDAKİ 1,2,4-TRİAZOL TÜREVLERİ VE UYGULAMA ÖNERİLERİ

Yurii SAMELİUK, Tetyana KAPLAUSHENKO, Fadi AL ZEDAN

TÜRKİYE’DE DOĞAL OLARAK YETİŞEN CELTIS AUSTRALIS L. VE C. TOURNEFORTII LAM. (CANNABACEAE) MEYVELERİNİN YAĞ ASİTİ BİLEŞİMLERİ VE ANTİMİKROBİYAL ETKİLERİNİN DEĞERLENDİRİLMESİ

Gülderen YILMAZ, Gözde ÖZTÜRK, Betül DEMİRCİ

BİR ANTİHİPERTANSİF FORMÜLASYONDAKİ AKTİF BİLEŞİKLERİN HAAR-CWT YÖNTEMİYLE SPEKTROFOTOMETRİK TAYİNİ

Özgür ÜSTÜNDAĞ, Erdal DİNÇ

3- VE 4-SÜBSTİTÜE-5-((3-FENİLPROPİL)TİYO)-4H-1,2,4-TRİAZOLLERİN MİKRODALGA SENTEZİ

Andrey SAFONOV, Alina NEVMYVAKA, Oleksandr PANASENKO, Yevgenii KNYSH

RESVERATROLÜN BULUNDUĞU KAYNAKLAR VE TIBBİ ÖNEMİ

Seren GÜNDOĞDU, Ümmügülsüm UÇAR, Ayşe UZ

2-((4-R-5-R1-4H-1,2,4-TRİAZOL-3-İL)TİYO)ASETALDEHİTLERİN İLİDENHİDRAZİDLERİNİN SENTEZİ, ANTİMİKROBİYAL VE ANTİFUNGAL AKTİVİTES

Olexandr PANASENKO, Roman SHCHERBYNA, Olha POLONETS, Natalia NEDOREZANIUK, Maryna DUCHENKO

GALIUM APARINE’NİN ANTİOKSİDAN, ANTİMİKROBİYAL VE ANTİPROLİFERATİF AKTİVİTELERİ

Nuh KORKMAZ, Alpaslan DAYANGAÇ, Mustafa SEVİNDİK