MANTARLARIN BİYOLOJİK AKTİVİTELERİ İLE İLGİLİ İN VİTRO, İN VİVO VE KLİNİK DEĞERLENDİRMELER

Amaç: Mantarlar yüzyıllardan beri Uzakdoğu başta olmak üzere tüm dünyada gıda ve tıbbi amaçlı olarak kullanılmaktadır. Dünya genelinde kardiyovasküler hastalıklar, diyabet, kanser, obezite gibi hastalıkların hızla artması ve buna bağlı olarak tedavi ve bakım maliyetlerindeki artışlar, hem araştırıcılar hem de halk arasında alternatif tedavi yöntemlerine olan ilgiyi artmıştır.Sonuç ve Tartışma: In vitro ve in vivo analizler ile klinik çalışmalar, başta Pleurotus spp, Lentinula edodes, Ganoderma lucidum, Grifolia frondosa gibi türler olmak üzere birçok mantar türünün yüzyıllardan beri süregelen geleneksel kullanımlarının doğruluğunu kanıtlamakta ve mantarlardan elde edilen ana biyoaktif bileşiklerin çeşitli hastalıkların önlenmesinde ve tedavisinde bir potansiyele sahip olduklarını göstermektedir. Bu derlemede mantarların, günümüzde sık rastlanan kanser, kardiyovasküler hastalıklar, diyabet gibi hastalıkların önlenmesi ve tedavisindeki potansiyellerini değerlendirmek amacıyla antitümör, antioksidan, antimikrobiyal, kolesterol düşürücü ve kan şekerini düzenleyici etkileri ile ilgili güncel in vitro, in vivo ve klinik çalışmalar derlenmiştir.

IN VITRO, IN VIVO AND CLINICAL ASSESMENT ABOUT THE MEDICINAL CHARACTERISTICS OF MUSHROOMS

Objective: For centuries, mushrooms have been used for food and medicinal purposes all over the world, especially in the Far East. The rapid increase of diseases such as cardiovascular diseases, diabetes, cancer, obesity worldwide and and increases in the costs of treatment and care of these diseases have increased the interest in alternative treatment methods among both researchers and the public.

___

  • 1. Miles, P.G., Chang, S.T. (2004). Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC press, p.6.
  • 2. FAO, Food and Agriculture Organization of the United Nations. (2018). http://www.fao.org/home/en
  • 3. Dembitsky, V.M., Terent'ev, A.O., Levitsky, D.O. (2010). Amino and fatty acids of wild edible mushrooms of the genus Boletus. Records of Natural Products, 4(4), 218-223.
  • 4. Sevindik, M. (2018). Investigation of oxidant and antioxidant status of edible mushroom Clavariadelphus truncatus. Mantar Dergisi/The Journal of Fungus, 9(2), 165-168.
  • 5. Reis, F.S., Martins, A., Barros, L., Ferreira, I.C. (2012). Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food and Chemical Toxicology, 50(5), 1201-1207.
  • 6. Ghahremani-Majd, H., Dashti, F. (2015). Chemical composition and antioxidant properties of cultivated button mushrooms (Agaricus bisporus). Horticulture, Environment, and Biotechnology, 56(3), 376-382.
  • 7. Manzi, P., Aguzzi, A., Pizzoferrato, L. (2001). Nutritional value of mushrooms widely consumed in Italy. Food Chemistry, 73(3), 321-325.
  • 8. Wada, T., Sumardika, I. W., Saito, S., Ruma, I. M. W., Kondo, E., Shibukawa, M., Sakaguchi, M. (2017). Identification of a novel component leading to anti-tumor activity besides the major ingredient cordycepin in Cordyceps militaris extract. Journal of Chromatography B, 1061, 209- 219.
  • 9. Qu, L., Li, S., Zhuo, Y., Chen, J., Qin, X., Guo, G. (2017). Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells. Oncology Letters, 14(6), 7467-7472.
  • 10. Wang, X., Sun, D., Tai, J., Wang, L. (2017). Ganoderic acid A inhibits proliferation and invasion, and promotes apoptosis in human hepatocellular carcinoma cells. Molecular Medicine Reports, 16(4), 3894-3900.
  • 11. Thongbai, B., Rapior, S., Hyde, K.D., Wittstein, K., Sadler, M. (2015). Hericium erinaceus, an amazing medicinal mushroom. Mycological Progress, 14(91),1-23.
  • 12. Salmones W. (2017). Medicinal Properties and Clinical Effects of Medicinal Mushrooms Zied D.C ve Pardo-Giménez A. (Eds.), Edible and Medicinal Mushrooms: Technology and Applications, Wiley Blackwell, England, p.504.
  • 13. Ferreira, C.F.R., Vaz J.A., Vasconcelos, M. H., Martins, A.R.L. (2010). Compounds from wild mushrooms with antitumor potential. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 10(5), 424-436.
  • 14. Ferreira, I. C., Heleno, S. A., Reis, F. S., Stojkovic, D., Queiroz, M. J. R., Vasconcelos, M. H., Sokovic, M. (2015). Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry, 114, 38-55.
  • 15. Ravi, B., Renitta, R. E., Prabha, M. L., Issac, R., Naidu, S. (2013). Evaluation of antidiabetic potential of oyster mushroom (Pleurotus ostreatus) in alloxan-induced diabetic mice. Immunopharmacology and Immunotoxicology, 35(1), 101-109.
  • 16. Schneider, I., Kressel, G., Meyer, A., Krings, U., Berger, R. G., Hahn, A. (2011). Lipid lowering effects of oyster mushroom (Pleurotus ostreatus) in humans. Journal of Functional Foods, 3(1), 17-24.
  • 17. Lim, W.Z., Cheng, P.G., Abdulrahman, A.Y., Teoh, T.C. (2020) The identification of active compounds in Ganoderma lucidum var. antler extract inhibiting dengue virus serine protease and its computational studies. Journal of Biomolecular Structure and Dynamics, 38(14), 4273- 4288.
  • 18. Kosanic, M., Rankovic, B., Dasic, M. (2013). Antioxidant and antimicrobial properties of mushrooms. Bulgarian Journal of Agricultural Science, 19(5), 1040-1046.
  • 19. Wang, Q., Wang, F., Xu, Z., & Ding, Z. (2017). Bioactive mushroom polysaccharides: a review on monosaccharide composition, biosynthesis and regulation. Molecules, 22(6): 955, 1-13.
  • 20. Aleem, E. (2013). β-Glucans and their applications in cancer therapy: focus on human studies. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal ChemistryAnti-Cancer Agents), 13(5), 709-719.
  • 21. Wang, Y., Liu, Y., Yu, H., Zhou, S., Zhang, Z., Wu, D., Zhang, J. (2017). Structural characterization and immuno-enhancing activity of a highly branched water-soluble β-glucan from the spores of Ganoderma lucidum. Carbohydrate Polymers, 167, 337-344.
  • 22. Ramberg, J. E., Nelson, E. D., Sinnott, R. A. (2010). Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutrition Journal, 9(1), 1-22.
  • 23. Amdekar, S. (2016). Ganoderma lucidum (Reishi): source of pharmacologically active compounds. Current Science, 111(6), 976-978.
  • 24. Khatian, N., Aslam, M. (2018). A review of Ganoderma lucidum (Reishi): A miraculous medicinal mushroom. Inventi Rapid: Ethnopharmacology, 4, 1-6.
  • 25. Loyd, A. L., Richter, B. S., Jusino, M. A., Truong, C., Smith, M. E., Blanchette, R. A., Smith,J. A. (2018). Identifying the “mushroom of immortality”: assessing the Ganoderma species composition in commercial Reishi products. Frontiers in Microbiology, 9:1557, 1-14.
  • 26. Nandi, S., Sikder, R., Acharya, K. (2019). Secondary metabolites of mushrooms: A potential source for anticancer therapeutics with translational opportunities. In Advancing Frontiers in Mycology & Mycotechnology, Springer, Singapore, p.563.
  • 27. Qi, F., Zhao, L., Zhou, A., Zhang, B., Li, A., Wang, Z., Han, J. (2015). The advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer. Bioscience Trends, 9(1), 16-34.
  • 28. Lee, H. H., Lee, S., Lee, K., Shin, Y. S., Kang, H., Cho, H. (2015). Anti-cancer effect of Cordyceps militaris in human colorectal carcinoma RKO cells via cell cycle arrest and mitochondrial apoptosis. DARU Journal of Pharmaceutical Sciences, 23(1), 1-8.
  • 29. Tomonobu, N., Komalasari, N. L. G. Y., Sumardika, I. W., Jiang, F., Chen, Y., Yamamoto, K. I., Sakaguchi, M. (2020). Xylitol acts as an anticancer monosaccharide to induce selective cancer death via regulation of the glutathione level. Chemico-Biological Interactions, 324, 109085, 1-13.
  • 30. Huo, X., Liu, C., Bai, X., Li, W., Li, J., Hu, X., Cao, L. (2017). Aqueous extract of Cordyceps sinensis potentiates the antitumor effect of DDP and attenuates therapy-associated toxicity in non-small cell lung cancer via IκBα/NFκB and AKT/MMP2/MMP9 pathways. Rsc Advances, 7(60), 37743-37754.
  • 31. Jin, Y., Meng, X., Qiu, Z., Su, Y., Yu, P., Qu, P. (2018). Anti-tumor and anti-metastatic roles of cordycepin, one bioactive compound of Cordyceps militaris. Saudi Journal of Biological Sciences, 25(5), 991-995.
  • 32. Xu, Z., Chen, X., Zhong, Z., Chen, L., Wang, Y. (2011). Ganoderma lucidum polysaccharides: immunomodulation and potential anti-tumor activities. The American Journal of Chinese Medicine, 39(1), 15-27.
  • 33. Wu, K., Na, K., Chen, D., Wang, Y., Pan, H., Wang, X. (2018). Effects of non-steroidal antiinflammatory drug-activated gene-1 on Ganoderma lucidum polysaccharides-induced apoptosis of human prostate cancer PC-3 cells. International Journal of Oncology, 53(6), 2356-2368.
  • 34. Sohretoglu, D., Huang, S. (2018). Ganoderma lucidum polysaccharides as an anti-cancer agent. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal ChemistryAnti-Cancer Agents), 18(5), 667-674.
  • 35. Zhao, R. L., He, Y. M. (2018). Network pharmacology analysis of the anti-cancer pharmacological mechanisms of Ganoderma lucidum extract with experimental support using Hepa1-6-bearing C57 BL/6 mice. Journal of Ethnopharmacology, 210, 287-295.
  • 36. Martínez-Montemayor, M. M., Ling, T., Suárez-Arroyo, I. J., Ortiz-Soto, G., Santiago-Negrón, C. L., Lacourt-Ventura, M. Y., Rivas, F. (2019). Identification of biologically active Ganoderma lucidum compounds and synthesis of improved derivatives that confer anticancer activities in vitro. Frontiers in Pharmacology, 10:115, 1-17.
  • 37. Lavi, I., Friesem, D., Geresh, S., Hadar, Y., Schwartz, B. (2006). An aqueous polysaccharide extract from the edible mushroom Pleurotus ostreatus induces anti-proliferative and proapoptotic effects on HT-29 colon cancer cells. Cancer Letters, 244(1), 61-70.
  • 38. Gu, Y. H., Sivam, G. (2006). Cytotoxic effect of oyster mushroom Pleurotus ostreatus on human androgen-independent prostate cancer PC-3 cells. Journal of Medicinal Food, 9(2), 196- 204.
  • 39. Martin, K. R., Brophy, S. K. (2010). Commonly consumed and specialty dietary mushrooms reduce cellular proliferation in MCF-7 human breast cancer cells. Experimental Biology and Medicine, 235(11), 1306-1314.
  • 40. Tong, H., Xia, F., Feng, K., Sun, G., Gao, X., Sun, L., Sun, X. (2009). Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostreatus. Bioresource Technology, 100(4), 1682-1686.
  • 41. Hassan, M. A. A., Rouf, R., Tiralongo, E., May, T. W., Tiralongo, J. (2015). Mushroom lectins: specificity, structure and bioactivity relevant to human disease. International Journal of Molecular Sciences, 16(4), 7802-7838.
  • 42. Sałata, A., Lemieszek, M., Parzymies, M. (2018). The nutritional and health properties of an oyster mushroom (Pleurotus ostreatus (Jacq. Fr) P. Kumm.). Acta Scientiarum Polonorum Hortorum Cultus, 17, 185-197.
  • 43. Refaie, F. M., Esmat, A. Y., Daba, A. S., Osman, W. M., Taha, S. M. (2010). Hepatoprotective activity of polysaccharopeptides from Pleurotus ostreatus mycelium on thioacetamideintoxicated mice. Micologia Aplicada International, 22(1), 1-13.
  • 44. Wu, X., Zheng, S., Cui, L., Wang, H., & Ng, T. B. (2010). Isolation and characterization of a novel ribonuclease from the pink oyster mushroom Pleurotus djamor. The Journal of General and Applied Microbiology, 56(3), 231-239.
  • 45. Jing, X., Mao, D., Geng, L., Xu, C. (2013). Medium optimization, molecular characterization, and bioactivity of exopolysaccharides from Pleurotus eryngii. Archives of Microbiology, 195(10-11), 749-757.
  • 46. Ma, G., Yang, W., Mariga, A. M., Fang, Y., Ma, N., Pei, F., Hu, Q. (2014). Purification, characterization and antitumor activity of polysaccharides from Pleurotus eryngii residue. Carbohydrate Polymers, 114, 297-305.
  • 47. Wu, J. Y., Chen, C. H., Chang, W. H., Chung, K. T., Liu, Y. W., Lu, F. J., Chen, C. H. (2011). Anti-cancer effects of protein extracts from Calvatia lilacina, Pleurotus ostreatus and Volvariella volvacea. Evidence-Based Complementary and Alternative Medicine, 2011, 1-10.
  • 48. Wiater, A., Paduch, R., Pleszczyńska, M., Próchniak, K., Choma, A., Kandefer-Szerszeń, M., Szczodrak, J. (2011). α-(1→ 3)-d-Glucans from fruiting bodies of selected macromycetes fungi and the biological activity of their carboxymethylated products. Biotechnology Letters, 33(4), 787-795.
  • 49. Wiater, A., Paduch, R., Choma, A., Sylwia, S., Pleszczynska, M., Tomczyk, M., Janusz, S. (2015). (1→ 3)-α-D-Glucans from Aspergillus spp.: structural characterization and biological study on their carboxymethylated derivatives. Current Drug Targets, 16(13), 1488-1494.
  • 50. Sharif, S., Atta, A., Huma, T., Shah, A. A., Afzal, G., Rashid, S., Mustafa, G. (2018). Anticancer, antithrombotic, antityrosinase, and anti‐α‐glucosidase activities of selected wild and commercial mushrooms from Pakistan. Food Science and Nutrition, 6(8), 2170-2176.
  • 51. Facchini, J. M., Alves, E. P., Aguilera, C., Gern, R. M. M., Silveira, M. L. L., Wisbeck, E., Furlan, S. A. (2014). Antitumor activity of Pleurotus ostreatus polysaccharide fractions on Ehrlich tumor and Sarcoma 180. International Journal of Biological Macromolecules, 68, 72- 77.
  • 52. Zhang, Y., Li, Q., Shu, Y., Wang, H., Zheng, Z., Wang, J., Wang, K. (2015). Induction of apoptosis in S180 tumour bearing mice by polysaccharide from Lentinus edodes via mitochondria apoptotic pathway. Journal of Functional Foods, 15, 151-159.
  • 53. Finimundy, T. C., Scola, G., Scariot, F. J., Dillon, A. J., Moura, S., Echeverrigaray, S., RoeschEly, M. (2018). Extrinsic and intrinsic apoptotic responses induced by shiitake culinarymedicinal mushroom Lentinus edodes (Agaricomycetes) aqueous extract against a larynx carcinoma cell line. International Journal of Medicinal Mushrooms, 20(1), 31-46.
  • 54. Zhang, Y., Ma, G., Fang, L., Wang, L., Xie, J. (2014). The immunostimulatory and anti-tumor activities of polysaccharide from Agaricus bisporus (brown). Journal of Food and Nutrition Research, 2(3), 122-126.
  • 55. Smiderle, F. R., Ruthes, A. C., van Arkel, J., Chanput, W., Iacomini, M., Wichers, H. J., Van Griensven, L. J. (2011). Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells. BMC Complementary and Alternative Medicine, 11(1), 1-11.
  • 56. Pires, A. D. R. A., Ruthes, A. C., Cadena, S. M. S. C., Iacomini, M. (2017). Cytotoxic effect of a mannogalactoglucan extracted from Agaricus bisporus on HepG2 cells. Carbohydrate polymers, 170, 33-42.
  • 57. Poyraz, B., Güneş, H., Bahar, T. Ü. L., Sermenli, H. B. (2015). Antibacterial and antitumor activity of crude methanolic extracts from various macrofungi species. Research Journal of Biology Sciences, 8(1), 5-10.
  • 58. Song, F. Q., Liu, Y., Kong, X. S., Chang, W., Song, G. (2013). Progress on understanding the anticancer mechanisms of medicinal mushroom: Inonotus obliquus. Asian Pacific Journal of Cancer Prevention, 14(3), 1571-1578.
  • 59. Çöl B., Balcı E., Güneş H., Allı H. (2017). Schizophyllum commune Fr. türünden misel eldesi, moleküler tanımlanması ve antitümör etkisinin araştırılması: Süleyman Demirel University Journal of Natural and Applied Sciences,21(2) 586-591.
  • 60. Kosanić, M., Ranković, B., Rančić, A., Stanojković, T. (2016). Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. Journal of Food and Drug Analysis, 24(3), 477-484.
  • 61. Xu, T., B Beelman, R.., D Lambert, J. (2012). The cancer preventive effects of edible mushrooms. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 12(10), 1255-1263.
  • 62. Mei, Y., Zhu, H., Hu, Q., Liu, Y., Zhao, S., Peng, N., Liang, Y. (2015). A novel polysaccharide from mycelia of cultured Phellinus linteus displays antitumor activity through apoptosis. Carbohydrate Polymers, 124, 90-97.
  • 63. Lu, T. L., Huang, G. J., Lu, T. J., Wu, J. B., Wu, C. H., Yang, T. C., Chen, Y. F. (2009). Hispolon from Phellinus linteus has antiproliferative effects via MDM2-recruited ERK1/2 activity in breast and bladder cancer cells. Food and Chemical Toxicology, 47(8), 2013-2021.
  • 64. Huang, H. Y., Chieh, S. Y., Tso, T. K., Chien, T. Y., Lin, H. T., Tsai, Y. C. (2011). Orally administered mycelial culture of Phellinus linteus exhibits antitumor effects in hepatoma cellbearing mice. Journal of Ethnopharmacology, 133(2), 460-466.
  • 65. Pei, J. J., Wang, Z. B., Ma, H. L., Yan, J. K. (2015). Structural features and antitumor activity of a novel polysaccharide from alkaline extract of Phellinus linteus mycelia. Carbohydrate Polymers, 115, 472-477.
  • 66. Delmanto, R. D., de Lima, P. L. A., Sugui, M. M., da Eira, A. F., Salvadori, D. M. F., Speit, G., Ribeiro, L. R. (2001). Antimutagenic effect of Agaricus blazei Murrill mushroom on the genotoxicity induced by cyclophosphamide. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 496(1-2), 15-21.
  • 67. Niu, Y. C., Liu, J. C., Zhao, X. M., Wu, X. X. (2008). A low molecular weight polysaccharide isolated from Agaricus blazei suppresses tumor growth and angiogenesis in vivo. Oncology Reports, 21(1), 145-152.
  • 68. Matsushita, Y., Furutani, Y., Matsuoka, R., Furukawa, T. (2018). Hot water extract of Agaricus blazei Murrill specifically inhibits growth and induces apoptosis in human pancreatic cancer cells. BMC Complementary and Alternative Medicine, 18(1), 1-11.
  • 69. Masuda, Y., Inoue, M., Miyata, A., Mizuno, S., Nanba, H. (2009). Maitake β-glucan enhances therapeutic effect and reduces myelosupression and nephrotoxicity of cisplatin in mice. International Immunopharmacology, 9(5), 620-626.
  • 70. Alonso, E. N., Orozco, M., Nieto, A. E., Balogh, G. A. (2013). Genes related to suppression of malignant phenotype induced by Maitake D-Fraction in breast cancer cells. Journal of Medicinal Food, 16(7), 602-617.
  • 71. He, Y., Li, X., Hao, C., Zeng, P., Zhang, M., Liu, Y., Zhang, L. (2018). Grifola frondosa polysaccharide: a review of antitumor and other biological activity studies in China. Discovery Medicine, 25(138), 159-176.
  • 72. Roca-Lema, D., Martinez-Iglesias, O., de Ana Portela, C. F., Rodríguez-Blanco, A., ValladaresAyerbes, M., Díaz-Díaz, A., Figueroa, A. (2019). In vitro anti-proliferative and anti-invasive effect of polysaccharide-rich extracts from Trametes versicolor and Grifola frondosa in colon cancer cells. International Journal of Medical Sciences, 16(2), 231.
  • 73. Chang, H. H., Hsieh, K. Y., Yeh, C. H., Tu, Y. P., Sheu, F. (2010). Oral administration of an Enoki mushroom protein FVE activates innate and adaptive immunity and induces anti-tumor activity against murine hepatocellular carcinoma. International Immunopharmacology, 10(2), 239-246.
  • 74. Krasnopolskaya, L. M., Shuktueva, M. I., Avtonomova, A. V., Yarina, M. S., Dzhavakhyan, B. R., Isakova, E. B., Bukhman, V. M. (2016). Antitumor and antioxidant properties of watersoluble polysaccharides from submerged mycelium of Flammulina velutipes. Antibiotiki i khimioterapiia= Antibiotics and Chemoterapy, 61(11-12), 16-20.
  • 75. Latha, K., Baskar, R. (2014). Comparative study on the production, purification and characterization of exopolysaccharides from oyster mushrooms, Pleurotus florida and Hypsizygus ulmarius and their applications. In Proceedings of 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8), I&II, 192-198.
  • 76. Phaniendra, A., Jestadi, D. B., Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1), 11-26.
  • 77. Nimse, S. B., Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. The Royal Society of Chemistry Advances, 5(35), 27986-28006.
  • 78. Hochmann, M. (1988). Les annotations marginales de Federico Zuccaro à un exemplaire des «Vies» de Vasari. La réaction anti-vasarienne à la fin du XVIe siècle. Revue de l'Art, 80(1), 64- 71.
  • 79. Botterweck, A. A. M., Verhagen, H., Goldbohm, R. A., Kleinjans, J., Van den Brandt, P. A. (2000). Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands cohort study. Food and Chemical Toxicology, 38(7), 599-605.
  • 80. Babu, D. R., Rao, G. N. (2013). Antioxidant properties and electrochemical behavior of cultivated commercial Indian edible mushrooms. Journal of Food Science and Technology, 50(2), 301-308.
  • 81. Atila, F., Tuzel, Y., Fernández, J. A., Cano, A. F., Sen, F. (2018). The effect of some agro– industrial wastes on yield, nutritional characteristics and antioxidant activities of Hericium erinaceus isolates. Scientia Horticulturae, 238, 246-254.
  • 82. Gąsecka, M., Siwulski, M., Magdziak, Z., Budzyńska, S., Stuper-Szablewska, K., Niedzielski, P., Mleczek, M. (2020). The effect of drying temperature on bioactive compounds and antioxidant activity of Leccinum scabrum (Bull.) Gray and Hericium erinaceus (Bull.) Pers. Journal of Food Science and Technology, 57(2), 513-525.
  • 83. Côté, J., Caillet, S., Doyon, G., Sylvain, J. F., Lacroix, M. (2010). Analyzing cranberry bioactive compounds. Critical Reviews in Food Science and Nutrition, 50(9), 872-888.
  • 84. Palacios, I., Lozano, M., Moro, C., D’arrigo, M., Rostagno, M. A., Martínez, J. A., Villares, A. (2011). Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chemistry, 128(3), 674-678.
  • 85. Wong, K. H., Sabaratnam, V., Abdullah, N., Kuppusamy, U. R., Naidu, M. (2009). Effects of cultivation techniques and processing on antimicrobial and antioxidant activities of Hericium erinaceus (Bull.: Fr.) Pers. extracts. Food Technology and Biotechnology, 47(1), 47-55.
  • 86. Atila, F. (2019). Comparative evaluation of the antioxidant potential of Hericium erinaceus, Hericium americanum and Hericium coralloides. Acta Scientiarum Polonorum. Hortorum Cultus, 18(6), 97-106.
  • 87. Woldegiorgis, A. Z., Abate, D., Haki, G. D., Ziegler, G. R. (2014). Antioxidant property of edible mushrooms collected from Ethiopia. Food Chemistry, 157, 30-36.
  • 88. Rajasekaran, M., Kalaimagal, C. (2011). In vitro antioxidant activity of ethanolic extract of a medicinal mushroom, Ganoderma lucidum. Journal of Pharmaceutical Sciences and Research, 3(9), 1427.
  • 89. Kozarski, M., Klaus, A., Niksic, M., Jakovljevic, D., Helsper, J. P., Van Griensven, L. J. (2011). Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food chemistry, 129(4), 1667-1675.
  • 90. Abdullah, N., Ismail, S. M., Aminudin, N., Shuib, A. S., Lau, B. F. (2012). Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Evidence-Based Complementary and Alternative Medicine, 2012, 1-12.
  • 91. Fasoranti, O., Ogidi, C. O., Oyetayo, V. O. (2019). Nutrient contents and antioxidant properties of Pleurotus spp. cultivated on substrate fortified with Selenium. Current Research Environmentaland Applied Mycology, 9, 66-76.
  • 92. Jayakumar, T., Ramesh, E., Geraldine, P. (2006). Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl4-induced liver injury in rats. Food and Chemical Toxicology, 44(12), 1989-1996.
  • 93. Jayakumar, T., Sakthivel, M., Thomas, P. A., Geraldine, P. (2008). Pleurotus ostreatus, an oyster mushroom, decreases the oxidative stress induced by carbon tetrachloride in rat kidneys, heart and brain. Chemico-Biological Interactions, 176(2-3), 108-120.
  • 94. Nada, S. A., Omara, E. A., Abdel-Salam, O. M., Zahran, H. G. (2010). Mushroom insoluble polysaccharides prevent carbon tetrachloride-induced hepatotoxicity in rat. Food and Chemical Toxicology, 48(11), 3184-3188.
  • 95. Liu, J., Jia, L., Kan, J., Jin, C. H. (2013). In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food and Chemical Toxicology, 51, 310-316.
  • 96. Xu, W. W., Li, B., Lai, E. T. C., Chen, L., Huang, J. J. H., Cheung, A. L. M., Cheung, P. C. K. (2014). Water extract from Pleurotus pulmonarius with antioxidant activity exerts in vivo chemoprophylaxis and chemosensitization for liver cancer. Nutrition and Cancer, 66(6), 989- 998.
  • 97. Meng, F., Zhou, B., Lin, R., Jia, L., Liu, X., Deng, P., Zhang, J. (2010). Extraction optimization and in vivo antioxidant activities of exopolysaccharide by Morchella esculenta SO01. Bioresource Technology, 101(12), 4564-4569.
  • 98. Jayakumar, T., Thomas, P. A., Sheu, J. R., & Geraldine, P. (2011). In-vitro and in-vivo antioxidant effects of the oyster mushroom Pleurotus ostreatus. Food Research International, 44(4), 851-861.
  • 99. You, R., Wang, K., Liu, J., Liu, M., Luo, L., Zhang, Y. (2011). A comparison study between different molecular weight polysaccharides derived from Lentinus edodes and their antioxidant activities in vivo. Pharmaceutical Biology, 49(12), 1298-1305.
  • 100. Yan, J. K., Wang, Y. Y., Ma, H. L., Wang, Z. B., Pei, J. J. (2016). Structural characteristics and antioxidant activity in vivo of a polysaccharide isolated from Phellinus linteus mycelia. Journal of the Taiwan Institute of Chemical Engineers, 65, 110-117.
  • 101. Barros, L., Calhelha, R. C., Vaz, J. A., Ferreira, I. C., Baptista, P., Estevinho, L. M. (2007). Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. European Food Research and Technology, 225(2), 151-156.
  • 102. Skalicka-Wozniak, K., Szypowski, J., Los, R., Siwulski, M., Sobieralski, K., Glowniak, K., Malm, A. (2012). Evaluation of polysaccharides content in fruit bodies and their antimicrobial activity of four Ganoderma lucidum (W Curt.: Fr.) P. Karst. strains cultivated on different wood type substrates. Acta Societatis Botanicorum Poloniae, 81(1).
  • 103. Tamilselvan, N., Rajesh, K. (2019). Antimicrobial efficacy of medicinal mushroom Ganoderma lucidum, International Journal of Trend in Scientific Research and Development, 5(1), 1798-1800.
  • 104. Ramesh, C. H., Pattar, M. G. (2010). Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India. Pharmacognosy Research, 2(2), 107-112.
  • 105. Getha, K., Hatsu, M., Wong, H. J., Lee, S. S. (2009). Submerged cultivation of basidiomycete fungi associated with root diseases for production of valuable bioactive metabolites. Journal of Tropical Forest Science, (21)1, 1-7.
  • 106. Suseem, S. R., Saral, A. M. (2013). Analysis on essential fatty acid esters of mushroom pleurotus eous and its antibacterial activity. Asian Journal of Pharmaceutical Clinical Research, 6(1), 188-91.
  • 107. Kosanić, M., Ranković, B., Dašić, M. (2012). Mushrooms as possible antioxidant and antimicrobial agents. Iranian Journal of Pharmaceutical Research, 11(4), 1095-1102.
  • 108. Moglad, E. H., Saadabi, A. M. (2012). Screening of antimicrobial activity of wild mushrooms from Khartoum State of Sudan. Microbiology Journal, 2(2), 64-69.
  • 109. Hussein, A. R., Ali, E. M., Hamid, E. (2018). Antibacterial activity of alcoholic and aqueous extracts of Agaricus bisporus against food borne bacterial pathogens. Al-Nahrain Journal of Science, 21(1), 111-114.
  • 110. Waqas, H. M., Akbar, M., Khalil, T., Ishfaq, M., Aslam, N., Chohan, S. A., Iqbal, M. S. (2018). Identıfıcatıon of natural antifungal constituents from Agaricus Bisporus (Je Lange) Imbach. Applied Ecology and Environmental Research, 16(6), 7937-7951.
  • 111. Casaril, K. B. P. B., Kasuya, M. C. M., Vanetti, M. C. D. (2011). Antimicrobial activity and mineral composition of shiitake mushrooms cultivated on agricultural waste. Brazilian Archives of Biology and Technology, 54(5), 991-1002.
  • 112. Heleno, S. A., Barros, L., Martins, A., Morales, P., Fernández-Ruiz, V., Glamoclija, J., Ferreira, I. C. (2015). Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT-Food Science and Technology, 63(2), 799-806.
  • 113. Chowdhury, M. M. H., Kubra, K., Ahmed, S. R. (2015). Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Annals of Clinical Microbiology and Antimicrobials, 14(1), 8.
  • 114. Stanley, H. O., Onwuna, D. B., Ugboma, C. J. (2018). The antimicrobial activity of sclerotia of Pleurotus tuberregium (Osu) on some clinical isolates. Journal of Advances in Microbiology, (8)4:1-4.
  • 115. Al-Faqeeh, L. A. S., Naser, R., SR., K., Khan, S. W. (2019). TLC and FTIR analyses of Hypsizygus ulmarius (Bull.) fruiting bodies. International Journal of Pharmacy and Pharmaceutical Research, 17, 61-71.
  • 116. Dong, Y., Zhang, J., Gao, Z., Zhao, H., Sun, G., Wang, X., Jia, L. (2019). Characterization and anti-hyperlipidemia effects of enzymatic residue polysaccharides from Pleurotus ostreatus. International Journal of Biological Macromolecules, 129, 316-325.
  • 117. Nwobi, N. L., Usiobeigbe, O. S., Osaro, R. O., Nwobi, J. C. (2019). Ameliorative effect of Pleurotus ostreatus on lipid levels and atherogenic indices in hyperlipidemic rats. Asian Journal of Research in Medical and Pharmaceutical Sciences,(8)3-4, 1-6.
  • 118. Piskov, S., Timchenko, L., Grimm, W. D., Rzhepakovsky, I., Avanesyan, S., Sizonenko, M., Kurchenko, V. (2020). Effects of various drying methods on some physico-chemical properties and the antioxidant profile and ACE inhibition activity of oyster mushrooms (Pleurotus ostreatus). Foods, 9(2):160, 1-26.
  • 119. Anandhi, R., Annadurai, T., Anitha, T. S., Muralidharan, A. R., Najmunnisha, K., Nachiappan, V., Geraldine, P. (2013). Antihypercholesterolemic and antioxidative effects of an extract of the oyster mushroom, Pleurotus ostreatus, and its major constituent, chrysin, in Triton WR-1339- induced hypercholesterolemic rats. Journal of Physiology and Biochemistry, 69(2), 313-323.
  • 120. Jeong, S. C., Jeong, Y. T., Yang, B. K., Islam, R., Koyyalamudi, S. R., Pang, G., Song, C. H. (2010). White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutrition Research, 30(1), 49-56.
  • 121. Priya, G., Chellaram, C. (2011). In vivo Anti–hyperlipidemic effects of edible mushroom, Agaricus bisporus. Advanced Biotechnology, 10(7), 38-40.
  • 122. Balakrishnan, P., Loganayagi, C. T. (2018). Antihyperglycemic activity of Agaricus bisporus mushroom extracts on alloxan induced diabetic rats. International Journal of Pharma Research Health Science, 6(2), 2475-79.
  • 123. Kała, K., Kryczyk-Poprawa, A., Rzewińska, A., Muszyńska, B. (2020). Fruiting bodies of selected edible mushrooms as a potential source of lovastatin. European Food Research and Technology, 246(4), 713-722.
  • 124. Chen, J., Mao, D., Yong, Y., Li, J., Wei, H., Lu, L. (2012). Hepatoprotective and hypolipidemic effects of water-soluble polysaccharidic extract of Pleurotus eryngii. Food Chemistry, 130(3), 687-694.
  • 125. Chen, L., Zhang, Y., Sha, O., Xu, W., Wang, S. (2016). Hypolipidaemic and hypoglycaemic activities of polysaccharide from Pleurotus eryngii in Kunming mice. International Journal of Biological Macromolecules, 93, 1206-1209.
  • 126. Xu, N., Ren, Z., Zhang, J., Song, X., Gao, Z., Jing, H., Jia, L. (2017). Antioxidant and antihyperlipidemic effects of mycelia zinc polysaccharides by Pleurotus eryngii var. tuoliensis. International Journal of Biological Macromolecules, 95, 204-214.
  • 127. Zhang, C., Li, J., Wang, J., Song, X., Zhang, J., Wu, S., Jia, L. (2017). Antihyperlipidaemic and hepatoprotective activities of acidic and enzymatic hydrolysis exopolysaccharides from Pleurotus eryngii SI-04. BMC Complementary and Alternative Medicine, 17(1), 1-11.
  • 128. Zhang, C., Zhang, L., Liu, H., Zhang, J., Hu, C., Jia, L. (2018). Antioxidation, antihyperglycaemia and renoprotective effects of extracellular polysaccharides from Pleurotus eryngii SI-04. International Journal of Biological Macromolecules, 111, 219-228.
  • 129. Sarker, M.M.R. (2015). Antihyperglycemic, insulin-sensitivity and anti-hyperlipidemic potential of Ganoderma lucidum, a dietary mushroom, on alloxan-and glucocorticoid-induced diabetic Long-Evans rats. Functional Foods in Health and Disease, 5(12), 450-466.
  • 130. Meneses, M. E., Martínez-Carrera, D., Torres, N., Sánchez-Tapia, M., Aguilar-López, M., Morales, P., Tovar, A.R.(2016). Hypocholesterolemic properties and prebiotic effects of Mexican Ganoderma lucidum in C57BL/6 mice. PloS one, 11(7): e0159631.
  • 131. Xu, Y., Zhang, X., Yan, X. H., Zhang, J. L., Wang, L. Y., Xue, H., Liu, X. J. (2019). Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum. International Journal of Biological Macromolecules, 135, 706-716.
  • 132. Li, L., Xu, J. X., Cao, Y. J., Lin, Y. C., Guo, W. L., Liu, J. Y., Rao, P. F. (2019). Preparation of Ganoderma lucidum polysaccharide-chromium (III) complex and its hypoglycemic and hypolipidemic activities in high-fat and high-fructose diet-induced pre-diabetic mice. International Journal of Biological Macromolecules, 140, 782-793.
  • 133. Wang, L., Xu, N., Zhang, J., Zhao, H., Lin, L., Jia, S., Jia, L. (2015). Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU12. Carbohydrate Polymers, 131, 355-362.
  • 134. Liu, R. M., Dai, R., Luo, Y., Xiao, J. H. (2019). Glucose-lowering and hypolipidemic activities of polysaccharides from Cordyceps taii in streptozotocin-induced diabetic mice. BMC Complementary and Alternative Medicine, 19(1), 230.
  • 135. Yoon, K. N., Alam, N., Lee, J. S., Cho, H. J., Kim, H. Y., Shim, M. J., Lee, T. S. (2011). Antihyperlipidemic effect of dietary Lentinus edodes on plasma, feces and hepatic tissues in hypercholesterolemic rats. Mycobiology, 39(2), 96-102.
  • 136. Yang, H., Hwang, I., Kim, S., Hong, E. J., Jeung, E. B. (2013). Lentinus edodes promotes fat removal in hypercholesterolemic mice. Experimental and Therapeutic Medicine, 6(6), 1409- 1413.
  • 137. Zhang, Y., Hu, T., Zhou, H., Zhang, Y., Jin, G., Yang, Y. (2016). Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats. International Journal of Biological Macromolecules, 83, 126-132.
  • 138. Pandimeena, M., Prabu, M., Sumathy, R., Kumuthakalavalli, R. (2015). Evaluation of phytochemicals and in vitro anti-inflammatory, anti-diabetic activity of the white oyster mushroom, Pleurotus florida. International Research Journal of Pharmaceuticaland Applied Science, 5, 16-21.
  • 139. Khatun, S., Islam, A., Guler, P., Cakilcioglu, U., Chatterjee, N. C. (2013). Hypoglycemic activity of a dietary mushroom Pleurotus florida on alloxan induced diabetic rats. Biological Diversity Conservation., 6, 91-96.
  • 140. Balaji, P., Madhanraj, R., Rameshkumar, K., Veeramanikandan, V., Eyini, M., Arun, A., Mahmoud, A. H. (2020). Evaluation of antidiabetic activity of Pleurotus pulmonarius against streptozotocin-nicotinamide induced diabetic wistar albino rats. Saudi Journal of Biological Sciences, 27(3), 913-924.
  • 141. Ng, S. H., Zain, M., Shazwan, M., Zakaria, F., Ishak, W., Rosli, W., Nizam, W. A. (2015). Hypoglycemic and antidiabetic effect of Pleurotus sajor-caju aqueous extract in normal and streptozotocin-induced diabetic rats. BioMed Research International, 2015, Article ID 214918
  • 142. Etewa, R. L., Mohamed, H. (2010). Hypoglycemic effect of button (Agaricus bisporus) and oyster (pleurotus ostreatus) mushrooms on streptozotocin induced diabetic mice. Biohealth Science Bulletin, 2(2), 48-51.
  • 143. Kumar, P. M. R., Kumar, M. S., Manivel, A., Mohan, S. C. (2018). Structural Characterization and Anti-Diabetic Activity of Polysaccharides from Agaricus bisporus Mushroom. Phytochemistry, 12(1), 14-20.
  • 144. Zaid, O. A. A., Sonbaty, S. E., Neama, M. A. Anti-diabetic activity of Agaricus bisporus: A biochemical and pathological study. International Journal of Pharma Science, 7(2), 1740-1745.
  • 145. Balakrishnan, P., Loganayagi, C. T. (2018). Antihyperglycemic activity of Agaricus bisporus mushroom extracts on alloxan induced diabetic rats. International Journal of Pharma Research and Health Science, 6(2), 2475-2479.
  • 146. Kim, H. M., Kang, J. S., Kim, J. Y., Park, S. K., Kim, H. S., Lee, Y. J., Han, S. B. (2010). Evaluation of antidiabetic activity of polysaccharide isolated from Phellinus linteus in nonobese diabetic mouse. International Immunopharmacology, 10(1), 72-78.
  • 147. Zhang, L., Liu, Y., Ke, Y., Liu, Y., Luo, X., Li, C., Hu, B. (2018). Antidiabetic activity of polysaccharides from Suillellus luridus in streptozotocin-induced diabetic mice. International Journal of Biological Macromolecules, 119, 134-140.
  • 148. Stojkovic, D., Smiljkovic, M., Ciric, A., Glamoclija, J., Van Griensven, L., Ferreira, I. C., Sokovic, M. (2019). An insight into antidiabetic properties of six medicinal and edible mushrooms: Inhibition of α-amylase and α-glucosidase linked to type-2 diabetes. South African Journal of Botany, 120, 100-103.
  • 149. Vincent, M., Philippe, E., Everard, A., Kassis, N., Rouch, C., Denom, J., Migrenne, S. (2013). Dietary supplementation with Agaricus blazei Murill extract prevents diet‐induced obesity and insulin resistance in rats. Obesity, 21(3), 553-561.
  • 150. Chen, L., Zhang, Y., Sha, O., Xu, W., Wang, S. (2016). Hypolipidaemic and hypoglycaemic activities of polysaccharide from Pleurotus eryngii in Kunming mice. International Journal of Biological Macromolecules, 93, 1206-1209.
  • 151. Oluba, O. M., Onyeneke, E. C., Ojieh, G. C., Idonije, B.O. (2010). Evaluation of the hypoglycemic effect of aqueous extract of Ganoderma lucidum on STZ-induced diabetic wistar rats. Annals of Biological Research, 1(3), 41-49.
  • 152. Ma, H. T., Hsieh, J. F., Chen, S. T. (2015). Anti-diabetic effects of Ganoderma lucidum. Phytochemistry, 114, 109-113.
  • 153. Xiao, C., Wu, Q., Zhang, J., Xie, Y., Cai, W., Tan, J. (2017). Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice. Journal of Ethnopharmacology, 196, 47-57.
  • 154. Guo, W. L., Shi, F. F., Li, L., Xu, J. X., Chen, M., Wu, L., Zhang, Y. Y. (2019). Preparation of a novel Grifola frondosa polysaccharide-chromium (III) complex and its hypoglycemic and hypolipidemic activities in high fat diet and streptozotocin-induced diabetic mice. International Journal of Biological Macromolecules, 131, 81-88.
  • 155. Kou, L., Du, M., Liu, P., Zhang, B., Zhang, Y., Yang, P., Wang, X. (2019). Anti-diabetic and anti-nephritic activities of Grifola frondosa mycelium polysaccharides in diet-streptozotocininduced diabetic rats via modulation on oxidative stress. Applied Biochemistry and Biotechnology, 187(1), 310-322.
  • 156. Chen, Y., Liu, Y., Sarker, M. M. R., Yan, X., Yang, C., Zhao, L., Zhao, C. (2018). Structural characterization and antidiabetic potential of a novel heteropolysaccharide from Grifola frondosa via IRS1/PI3K-JNK signaling pathways. Carbohydrate Polymers, 198, 452-461.
  • 157. Meera, K. S., Sudha, G., Rajathi, K., Manjusha, G. V. (2011). Antidiabetic effect of aqueous extract of Hypsizygus ulmarius on Streptozotocin-Nicotiinamide induced diabetic rats. Asian Journal of Pharmaceutical and Biological Research, 1(2),151-157
Ankara Üniversitesi Eczacılık Fakültesi Dergisi-Cover
  • ISSN: 1015-3918
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Ankara Üniversitesi Eczacılık Fakültesi
Sayıdaki Diğer Makaleler

HPTLC İLE CALOTROPIS GIGANTEA VE CALOTROPIS PROCERA YAPRAĞINDAKİ β-SİTOSTEROLÜN TANIMLANMASI VE MİKTAR TAYİNİ

Shripad BAİRAGİ, Prashant GHULE, Ritu GİLHOTRA

BİYOAKTİF MOLEKÜL METİL 4-BROMO-2-FLOROBENZOAT'IN İN SİLİKO İLAÇ DEĞERLENDİRMESİ VE ARAŞTIRMASI

Sambanthan MUTHU, Fazilath Basha ASIF, Malayappan Maria JULIE, Thirutanasambantam PRABU

PULMONER ARTERİYEL HİPERTANSİYON TEDAVİSİNDE GÜNCEL YAKLAŞIMLAR

Cenk YILDIZ, Burcu DEVRİM

HASTANELERDE SIKLIKLA KULLANILAN BAZI DEZENFEKTAN VE ANTİSEPTİKLERİN ANTİMİKROBİYAL AKTİVİTELERİNİN ARAŞTIRILMASI

Süleyman KAYAN, Nurten ALTANLAR

MANTARLARIN BİYOLOJİK AKTİVİTELERİ İLE İLGİLİ İN VİTRO, İN VİVO VE KLİNİK DEĞERLENDİRMELER

Ceren ÖZTÜRK, Funda ATİLA

TRİİYODOANİLİN’İN SENTEZLENMESİ, NANOSÜSPANSİYONLARININ HAZIRLANMASI, İN VİTRO KARAKTERİZASYONU VE RADYOKONTRAST ÖZELLİKLERİNİN İNCELENMESİ

Mehmet KOCA, Emrah ÖZAKAR, Rukiye SEVİNÇ ÖZAKAR

BAZI MICHAEL TİPİ KATIM ÜRÜNLERİNİN SENTEZ ÇALIŞMASI VE ANTİMİKROBİYAL AKTİVİTELERİ

Gül BAYRAM, Abdoul NZEYIMANA, Semra UTKU, Mahmut ÜLGER, Gönül ASLAN, Erdoğan BERÇIN

KATI LİPİT NANOPARTİKÜLLER VE BEYNE ÖZGÜ İLAÇ TAŞIYICI SİSTEM OLARAK UYGULAMALARI

Mahmut Ozan TOKSOY, Fahriye Figen TIRNAKSIZ

RV1463 OLASI KORUNMUŞ ATP BAĞLAYICI PROTEİNİN HESAPLAMALI YAKLAŞIMLA MOLEKÜLER TEMEL BÜTÜNLEŞTİRİCİ ANALİZİ

Md Amjad BEG, Mustafa SEVİNDİK, Shahid HAİDER, Preeti SONİ, Priya BHATİA, Shahzul HASAN, Richa YADAV, Fareeda ATHAR

COVID-19 TEDAVİSİNDE İLAÇ-İLAÇ ETKİLEŞİMLERİNİN FARMAKOKİNETİK AÇIDAN DEĞERLENDİRİLMESİ

Nuran COŞKUN, Ozge ULKER