TRAVMATİK BEYİN HASARINDA BİYOBELİRTEÇLER

Travmatik beyin hasar›, kafaya al›nan fiziksel kuvvet sonucu beyin ifllevlerinin bozulmas› olarak tan›mlan›r. Fonksiyonel, hücresel ve moleküler de¤ifliklikler meydana gelir. Oluflan heterojen tablo klinik durumu de¤erlendirmeyi ve prognozu tahmin edebilmeyi zorlaflt›r›r. Travmatik beyin hasar› hafif bir yaralanman›n ard›ndan asemptomatik bir klini¤e yol açabilece¤i gibi orta fliddetli veya a¤›r yaralanmalarda ölüme kadar ilerleyebilen tabloya neden olabilir. Bu derlemede beyin hasar›nda oluflan biyobelirteçlerin teflhiste, prognozda ve tedavinin planlanmas›ndaki yerlerini ortaya koymay› amaçlad›k.

BIOMARKERS IN TRAUMATIC BRAIN INJURY

Traumatic brain injury is defined as the impairment of thebrain function due to physical force to the head. Functional, cellular and molecular changes occur. The resulting heterogeneous outcome makes it difficult to assess the clinical status and predict the prognosis. Traumatic brain injury may lead to an asymptomatic clinic following a mild injury, or may lead to a progression to death in moderate or severe injuries. In this review, we aimed to reveal the biomarkers in brain damage for diagnosis, prognosis and treatment planning.

___

  • Nortje J, Menon DK. Traumatic brain injury: physiology, mechanisms, and outcome. Curr Opin Neurol 2004; 17: 711-718.
  • Faul M, Xu L, Wald M, Coronado V. Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths 2002-2006. Atlanta, GA: Centers for Disease Control and Prevention 2010; 1-74.
  • U.S. Food and Drug Administration (FDA). Eriflim tarihi: 15 fiubat 2018. Available from:https://www.fda.gov/NewsEvents/Newsroom/ PressAnnouncements/ucm596531.htm
  • Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J. A systematic review of brain injury epidemiology in Europe. Acta neurochirurgica 2006; 148: 255-268.
  • Teasdale G, Jennet B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974; 304: 81-84.
  • Teasdale G, Maas A, Lecky F, Manley G, Stocchetti N, Murray G. The Glasgow Coma Scale at 40 years: standing the test of time. Lancet Neurol 2014; 13: 844-854.
  • Faul M, Coronado V. Epidemiology of traumatic brain injury. Handb Clin Neurol 2015; 127: 3-13.
  • Belanger HG, Vanderploeg RD, Curtiss G, Warden DL. Recent neuroimaging techniques in mild traumatic brain injury. J Neuropsychiatr Clin Neurosci 2007; 19: 5-20.
  • Borg J, Holm L, Cassidy JD, et al. Collaborating Centre Task Force on Mild Traumatic Brain Injury WHO Diagnostic procedures in mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med 2004; (43 Suppl): 61-75.
  • Delouche A, Attyé A, Heck O, et al. Diffusion MRI: pitfalls, literature review and future directions of research in mild traumatic brain injury. Eur J Radiol 2016; 85: 25-30.
  • McDonald BC, Saykin AJ, McAllister TW. Functional MRI of mild traumatic brain injury (mTBI): progress and perspectives from the first decade of studies. Brain Imaging Behav 2012; 6: 193-207.
  • Zetterberg H, Blennow K. Fluid markers of traumatic braininjury. Mol Cell Neurosci 2015; 66: 99-102.
  • Baflkaya MK, Rao AM, Do¤an A, Donaldson D, Dempsey RJ. The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 1997; 226: 33-36.
  • Plog BA, Dashnaw ML, Hitomi E, et al. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci 2015; 35: 518-526.
  • Iliff JJ, Chen MJ, Plog BA, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 2014; 34: 16180-16193.
  • Yokobori S, Hosein K, Burks S, Sharma I, Gajavelli S, Bullock R. Biomarkers for the clinical differential diagnosis in traumatic brain injury-a systematic review. CNS Neurosci Ther 2013; 19: 556-565.
  • Kulbe JR, Geddes JW. Current status of fluid biomarkers in mild traumatic brain injury. Exp Neurol. 2016; 275: 334-352.
  • Adrian H, Mårten K, Salla N, Lasse V. Biomarkers of Traumatic Brain Injury: Temporal Changes in Body Fluids. ENEURO 2016; 3: 1-13.
  • Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 1965; 19: 739-744.
  • Rudman D, Fleischer A, Kutner MH. Concentration of 3’, 5’ cyclic adenosine monophosphate in ventricular cerebrospinal fluid of patients with prolonged coma after head trauma or intracranial hemorrhage. N Engl J Med 1976; 295: 635-638.
  • Vaagenes P, Safar P, Diven W, et al. Brain enzyme levels in CSF after cardiac arrest and resuscitationin dogs: Markers of damage and predictors of outcome. J Cereb Blood Flow Metab 1988; 8: 262-275.
  • Vaagenes P, Mullie A, Fodstad DT, Abramson N, Safar P. Theuse of cytosolic enzyme increase in cerebrospinal fluid of patients resuscitated after cardiac arrest. Brain Resuscitation Clinical Trial I Study Group. Am J Emerg Med 1994; 12: 621-624.
  • Mangiola A, Vigo V, Anile C, De Bonis P, Marziali G, Lofrese G. Role and Importance of IGF-1 in Traumatic Brain Injuries. Hindawi Publishing Corporation BioMed Research International 2015; 36104: 1-12.
  • Jenkins LW, Peters GW, Dixon CE, et al. Conventional and functional proteomics using large format two-dimensional gel electrophoresis 24 hours after controlled cortical impact in postnatal day 17 rats. J Neurotrauma 2002; 19: 715-740.
  • Gao W, Lu C, Kochanek PM, Berger RP. Serum amyloid A is increased in children with abusive head trauma: A gel-based proteomic analysis. Pediatr Res 2014; 76: 280-286.
  • Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: A bridge to lipidomics. J Lipid Res 2003; 4: 1071-1079.
  • Bakay RA, Ward AAJ. Enzymatic changes in serum and cerebrospinal fluid in neurological injury. J Neurosurg 1983; 58: 27-37.
  • Li L, Bao Y, He S, et al. The association between apolipoprotein E and functional outcome after traumatic brain injury: A Meta-Analysis. Medicine 2015; 94: e2028.
  • Lanterna LA, Ruigrok Y, Alexander S, et al. Meta-analysis of APOE genotype and subarachnoid hemorrhage: Clinical outcome and delayed ischemia. Neurology 2007; 69: 766-775.
  • Nicoll JA, Roberts GW, Graham DI. Apolipoprotein E epsilon 4 allele is associated withdeposition of amyloid beta-protein followinghead injury. Nat Med 1995; 1:135-137.
  • Roberts GW, Gentleman SM, Lynch A, et al. Beta A4 amyloid protein deposition in brain after head trauma. Lancet 1991; 338: 1422-1423.
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronicgene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-854.
  • Redell JB, Moore AN, Ward NH 3rd, Hergenroeder GW, Dash PK. Human traumatic brain injury alters plasma microRNA levels. J Neurotrauma 2010; 27: 2147-2156.
  • Yu B, Zhou S, Yi S, Gu X. The regulatory roles of non-coding RNAs in nerve injury and regeneration. Prog Neurobiol 2015; 134: 122-139.
  • Marx CE, Naylor JC, Kilts JD. Neurosteroids and traumatic brain injury: Translating biomarkers to therapeutics; overview and pilot investigations in Iraq and Afghanistan Era Veterans. Eds. Laskowitz D, Grant G, editors. Translational Research in Traumatic Brain Injury. Boca Raton (FL): CRC Press/Taylor and Francis Group; 2015.
  • Hellewell S, Semple BD, Morganti-Kossmann MC. Therapies negating neuroinflammation after brain trauma. Brain Res 2016; 1640: 36-56.
  • Chen J, Wu X, Shao B, et al. Increased expression of TNF receptor-associated factor 6 after rat traumatic brain injury. Cell Mol Neurobiol 2011; 31: 269-275.
  • Csuka E, Morganti-Kosman MC, Lenzligara PM, Jolierc H, Trentza O, Kosmanna T. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood–brain barrier function. J Neuroimmunol 1999; 101: 211-221.
  • Goodman JC, Robertson CS, Grossman RG, Nsrayan RK. Elevation of tumor necrosis factor in head injury. J Neuroimmunol 1990; 30: 213-217.
  • Ross SA, Halliday MI, Campbell GC, Byrnes DP, Rowlands BJ. The presence of tumour necrosis factor in CSF and plasma after severe head injury. Br J Neurosurg 1994; 8: 419-425.
  • Giulian D, Lachman LB. Interleukin-1 stimulation of astroglial proliferation after brain injury. Science 1985; 228: 497-499.
  • Carlson NG, Wieggel, WA, Chen J, Bacchi A, Rogers SW, Gahring LC. Inflammatory cytokines IL-1 alpha, IL-1 beta, IL-6, and TNF-alpha impart neuroprotection to an excitotoxin through distinct pathways. J Immunol 1999; 163: 3963-3968.
  • Shiozaki T, Hayataka T, Tasaki O, et al. Cerebrospinal fluid concentrations of antiinflammatory mediators in early-phase severe traumatic brain injury. Shock 2005; 23: 406-410.
  • Frugier T, Morganti-Kossmann MC, O'Reilly D, McLean CA. In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J Neurotrauma 2010; 27: 497-507.
  • Huang RQ, Cheng HL, Zhao XD, et al. Preliminary study on the effect of trauma-induced secondary cellular hypoxia in brain injury. Neurosci Lett 2010; 473: 22-27.
  • Morganti-Kossmann MC, Volkmar HJH, Lenzlinger PM, et al. TGF-beta is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood-brain barrier function. J Neurotrauma 1999; 16: 617-628.
  • Polentarutti N, Botazzi B, DiSanto E, et al. Inducible expression of the long pentraxin PTX3 in the central nervous system. J Neuroimmunol 2000; 106: 87-94.
  • Gullo Jda S, Bertotti M, Silva CCP, et al. Hospital mortality of patients with severe traumatic brain injury is associated with serum PTX3 levels. Neurocrit Care 2011; 14: 194-199.
  • Ahima RS, Bjorbaek C, Osei S, Flier JS. Regulation of neuronal and glial proteins by leptin: implications for brain development. Endocrinology 1999; 140: 2755-2762.
  • Dong XQ, Yang SB, Zhu FL, Lv QW, Zhang GH, Huang HB. Resistin is associated with mortality in patients with traumatic brain injury. Crit Care 2010; 14: R190.
  • Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kosmann MC. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab 2010; 30: 769-782.
  • Lumpkins K, Bochicchio GV, Bradley Z, et al. Plasma levels of the beta chemokine regulated upon activation, normal T cell expressed, and secreted (RANTES) correlate with severe brain injury. J Trauma 2008; 64: 358-361.
  • Bellander BM, Olafsson IH, Ghatan PH, et al. Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B. Acta Neurochirurgica 2011; 153: 90-100.
  • Ansari MA, Roberts KN, Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med 2008; 45: 443-452.
  • Varma S, Lanesko KL, Wisniewski SR, et al. F2-isoprostane and neuron-specific enolase in cerebrospinal fluid after severe traumatic brain injury in infants and children. J Neurotrauma 2003; 20: 781-786.
  • Musiek ES, Cha JK, Yin H, et al. Quantification of F-ring isoprostane-like compounds (F4-neuroprostanes) derived from docosahexaenoic acid in vivo in humans by a stable isotope dilution mass spectrometric assay. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 799: 95-102.
  • Bayir H, Marion DW, Puccio AM, et al. Marked gender effect on lipid peroxidation after severe traumatic brain injury in adult patients. J Neurotrauma 2004; 21: 1-8.
  • Bayir H, Kagan VE, Tyurina YY, et al. Assessment of antioxidant reserves and oxidative stress in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatr Res 2002; 51: 571-578.
  • Papa, L. Potential Blood-based Biomarkers for Concussion. Sports Med Arthrosc Rev 2016; 24: 108-115.
  • Rodríguez-Rodríguez A, Egea-Guerrero JJ, León-Justel A, et al. Role of S100B protein in urine and serum as an early predictor of mortality after severe traumatic brain injury in adults. Clin Chim Acta 2012; 414: 228-233.
  • Michetti F, Massaro A, Russo G, Rigon G. The S-100 antigen in cerebrospinal fluid as a possible index of cell injury in the nervous system. J Neurol Sci 1980; 44: 259-263.
  • Ingebrigtsen T, Romner B, Marup-Jensen S, et al. The clinical value of serum S-100 protein measurements in minor head injury: a Scandinavian multicentre study. Brain Inj 2000; 14: 1047-1055.
  • Biberthaler P, Linsenmeier U, Pfeifer KJ, et al. Serum S-100B concentration provides additional information fot the indica-tion of computed tomography in patients after minor head injury: a prospective multicenter study. Shock 2006; 25: 446-453.
  • Muller K, Townend W, Biasca N, et al. S100B serum level pre-dicts computed tomography findings after minor head injury. J Trauma 2007; 62: 1452-1456.
  • Zongo D, Ribereau-gayon, Masson F, et al. S100 b protein as a screening tool fo rthe early assessment of minör head injury. Ann Emerg Med 2012; 59: 209-218.
  • Ingebrigtsen T, Romner B. Management of minor head injuries in hospitals in Norway. Acta Neurol Scand 1997; 95: 51-55.
  • Waterloo K, Ingebrigtsen T, Romner B. Neuropsychological function in patients with increased serum levels of protein S-100 after minor head injury. Acta Neurochir 1997; 139: 26-31.
  • Ingebrigtsen T, Romner B. Serial S-100 protein serum mea-surements related to early magnetic resonance imaging after minor head injury. Case report. J Neurosurg 1996; 85: 945-948.
  • Ingebrigtsen T, Waterloo K, Jacobsen EA, Langbakk B, Romner B. Traumatic brain damage in minor head injury: relation of serum S-100 protein measurements to magnetic resonance imaging and neurobehavioral outcome. Neurosurgery 1999; 45: 468-475.
  • Romner B, Ingebrigtsen T. High serum S100B levels for trauma patients without head injuries. Neurosurgery 2001; 49: 1490-1491.
  • Nygren De Boussard C, Fredman P, et al. S100 in mild traumatic brain injury. Brain Inj 2004; 18: 671-683.
  • Anderson RE, Hansson LO, Nilsson O, Dijlai-Merzoug R, Settergren G. High serum S100B levels for trauma patients withouthead injuries. Neurosurgery 2001; 48: 1255-1260.
  • Undén J, Bellner J, Eneroth M, Alling C, Ingebrigtsen T, Romner B. Raised serum S100B levels after acute bone fractures without cerebral injury. J Trauma 2005; 58: 59-61.
  • Zurek J, Fedora M. The usefulness of S100B, NSE, GFAP, NF-H, secretagogin and Hsp70 as a predictive biomarker of outcome in children with traumatic brain injury. Acta Neurochir (Wien) 2012; 154: 93-103.
  • Mercier E, Boutin A, Lauzier F, et al. Predictive value of S-100 protein for prognosis in patients with moderate and severe traumatic brain injury: systematic review and meta-analysis. BMJ 2013; 346: f1757.
  • Avc› A. Kafa travmal› çocuklarda serum S100B protein düzeyi ile prognoz aras›ndaki iliflki. Çukurova Üniversitesi T›p Fakültesi ‹lk Yard›m ve Acil Anabilim dal› Uzmanl›k tezi. 2006.
  • Thelin EP, Nelson DW, Bellander BM. Secondary peaks of S100B in serum relate to subsequent radiological pathology in traumatic brain injury. Neurocrit Care 2014; 20: 217-229.
  • Vos PE, Lamers KJ, Hendriks JC, et al. Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology 2004; 62: 1303-1310.
  • Eng LF, Vanderhaeghen JJ, Bignami A, Gerstl B. An acidic protein isolated from fibrous astrocytes. Brain Res 1971; 28: 351-354.
  • Honda M, Tsuruta R, Kaneko T, et al. Serum glial fibrillary acidic protein is a highly specific biomarker for traumatic brain injury in humans compared with S-100B and neuron-specific enolase. J Trauma 2010; 69: 104-109.
  • Missler U, Wiesmann M, Wittmann G, Magerkurth O, Hagenström H. Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem 1999; 45: 138-141.
  • Lei J, Gao G, Feng J, et al. Glial fibrillary acidic protein as a biomarker in severe traumatic brain injury patients: a prospective cohort study. Crit Care 2015; 19: 362.
  • Papa L, Brophy GM, Welch RD, et al. Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol 2016; 73: 551-560.
  • Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma 2004; 21: 1553-1561.
  • Foerch C, Niessner M, Back T, et al. Diagnostic accuracy of plasma glial fibrillary acidic protein for differentiating intracerebral hemorrhage and cerebral ischemia in patients with symptoms of acute stroke. Clin Chem 2012; 58: 237-245.
  • Lee JY, Lee CY, Kim HR, Lee C-H, Kim HW, Kim JH. A role of serum-based neuronal and glial markers as potential predictors for distinguishing severity and related outcomes in traumatic brain injury. J Korean Neurosurg Soc 2015; 58: 93-100.
  • Vos PE, Jacobs B, Andriessen TMJC, et al. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology 2010; 75: 1786-1793.
  • Metting Z, Wilczak N, Rodiger LA, Schaaf JM, van der Naalt J. GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology 2012; 78: 1428-1433.
  • Lumpkins KM, Bochicchio GV, Keledjian K, Simard JM, McCunn M, Scalea T. Glial Fibrillary Acidic Protein is Highly Correlated With Brain Injury.J Trauma 2008; 65: 778-784.
  • Zurek J, Fedora M. Dynamics of glial fibrillary acidic protein during traumatic brain injury in children. J Trauma 2011; 71: 854-859.
  • Marangos PJ, Schmechel DE. Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci 1987; 10: 269-295.
  • Skogseid IM, Nordby HK, Urdal P, Paus E, Lilleaas F. Increased serum creatine kinase BB and neuron specific enolase following head injury indicates brain damage. Acta Neurochir (Wien) 1992; 115: 106-111.
  • Herrmann M, Jost S, Kutz S, et al. Temporal profile of release of neurobiochemical markers of brain damage after traumatic brain injury is associated with intracranial pathology as demonstrated in cranial computerized tomography. J Neurotrauma 2000; 17: 113-122.
  • Olivecrona Z, Bobinski L, Koskinen L-OD. Association of ICP, CPP, CT findings and S-100B and NSE in severe traumatic head injury. Prognostic value of the biomarkers. Brain Inj 2015; 29: 446-454.
  • Ross SA, cunningham RT, Johnston CF, Rowlands BJ. Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg 1996; 10: 471-476.
  • Meric E, Gunduz A, Turedi S, Cakir E, Yandi M. The prognostic value of neuron-specific enolase in head trauma patients. J Emerg Med 2010; 38: 297-301.
  • Ramont L, Thoannes H, Volondat A, Chastang F, Millet M-C, Maquart F-X. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med 2005; 43:1215-1217.
  • Mercier E, Boutin A, Shemilt M, et al. Predictive value of neuron-specific enolase for prognosis in patients with moderate or severe traumatic brain injury: a systematic review and meta-analysis. CMAJ Open 2016; 4.
  • Papa L, Ramia MM, Kelly JM, Burks SS, Pawlowicz A, Berger RP. Systematic Review of Clinical Research on Biomarkers for Pediatric Traumatic Brain Injury. J Neurotrauma 2013; 30: 324-338.
  • Cheng F, Yuan Q, Yang J, Wang W, Liu H. The prognostic value of serum neuron-specific enolase in traumatic brain injurysystematic review and meta-analysis. PloS One 2014; 9: e106680.
  • Bedekovics T, Hussain S, Feldman AL, Galardy PJ. UCH-L1 is induced in germinal center B cells and identifies patients with aggressive germinal center diffuse large B-cell lymphoma. Blood 2016; 127: 1564-1574.
  • Yang H, Zhang C, Fang S, Ou R, Li W, Xu Y. UCH-LI acts as a novel prognostic biomarker in gastric cardiac adenocarcinoma. Int J Clin Exp Pathol 2015; 8: 13957-13967.
  • Schroder C, Milde-Langosch K, Gebauer F, et al. Prognostic relevance of ubiquitin C-terminal hydrolase L1 (UCH-L1) mRNA and protein expression in breast cancer patients. J Cancer Res Clin Oncol 2013; 139: 1745-1755.
  • Mondello S, Linnet A, Buki A, et al. Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury. Neurosurgery 2012; 70: 666-675.
  • Takala RS, Posti JP, Runtti H, et al. GFAP and UCH-L1 as outcome predictors in traumatic brain injury. World Neurosurg 2016; 87: 8-20.
  • Papa L, Akinyi L, Liu MC, et al. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med. 2010; 38: 138-144.
  • Papa L, Lewis LM, Silvestri S, et al. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J Trauma Acute Care Surg 2012; 72: 1335-1344.
  • Mondello S, Kobeissy F, Vestri A, Hayes RL, Kochanek PM, Berger RP. Serum Concentrations of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein after Pediatric Traumatic Brain Injury. Sci Rep 2016; 6: 28203.
  • Rhine T, Babcock L, Zhang N, Leach J, Wade SL. Are UCH-L1 and GFAP promising biomarkers for children with mild traumatic brain injury? Brain Inj 2016; 30: 1231-1238.
  • Li J, Yu C, Sun Y, Li Y. Serum ubiquitin C-terminal hydrolase L1 as a biomarker for traumatic brain injury: a systematic review andmeta-analysis. Am J Emerg Med 2015; 33: 1191-1196.
  • Takala, RS, Posti JP, Runtti H, et al. Glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 as outcome predictors in traumatic brain injury. World Neurosurgery 2016; 87: 8-20.
  • Brophy GM, Mondello S, Papa L, et al. Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J Neurotrauma 2011; 28: 861-870.
  • Gatson JW, Barillas J, Hynan LS, Diaz-Arrastia R, Wolf SE, Minei JP. Detection of neurofilament-H in serum as a diagnostic tool to predict injury severity in patients who have suffered mild traumatic brain injury. J Neurosurg 2014; 121: 1232-1238.
  • Shibahashi K, Doi T, Tanaka S, et al. The serum phosphorylated neurofilament heavy subunit as a predictive marker for outcome in adult patients after traumatic brain injury. J Neurotrauma 2016; 30: 1826-1833.
  • Vajtr D, Benada O, Linzer P, et al. Immunohistochemistry and serum values of S-100B, glial fibrillary acidic protein, and hyperphosphorylated neurofilaments in brain injuries. J Ev Purkyne 2012; 57: 7-12.
  • Siman R, Shahim P, Tegner Y, Blennow K, Zetterberg H, Smith DH. Serum SNTF increases in concussed professional ice hockey players and relates to the severity of postconcussion symptoms. J Neurotrauma 2015; 32: 1294-1300.
  • Zemlan FP, Rosenberg WS, Luebbe PA, et al. Quantification of axonal damage in traumatic barin injury: affinity purification and characterization of cerebrospinal fluid Tau proteins. J Neurochem 1999; 72: 741-750.
  • Mutlu A. Febril ve afebril konvülziyon ile baflvuran çocuk hastalarda nöronal hasar›n belirlenmesinde serum tau protein düzeyinin yeri ve risk belirlemede önemi. Trakya Üniversitesi T›p Fakültesi Çocuk Sa¤l›¤› ve Hastal›klar› AD Tezi. 2011.
  • Cotman CW, Poon WW, Rissman RA, Blurton-Jones M. The role of caspase cleavage of Tau in Alzheimer disease neuropathology. J Neuropathol Exp Neurol 2005; 64: 104-112.
  • Spillantini MG, Goedert M. Tau protein pathology in neurodege-nerative diseases. Trends Neurosci 1998; 21: 428-433.
  • Hesse C, Rosengren L. Transient increase in total Tau but not phospho-Tau in human cerebrospinal fluid after acute stroke. Neurosci Lett 2001; 297: 187-189.
  • Wen Y, Yang S. Transient cerebral ischemia induces site-specific hyperphosphorylation of Tau protein. Brain Res 2004; 1022: 30-38.
  • Shaw J, Jauch E. Serum cleaved Tau protein levels and clinical outcome in adult patients with closed head injury. Ann Emerg Med 2002; 39: 254-257.
  • Liliang P-C, Liang C-L, Weng H-C, et al. Tau proteins in serum predict outcome after severe traumatic brain injury. J Surg Res 2010; 160: 302-307.
  • Bulut M, Koksal O, Bolca N, Dogan S, Akkose S. Serum Tau protein levels in adult patients with mild head injury. Eur J Emerg Med 2005; 12: 209.
  • Ma M, Lindsell CJ, Rosenberry CM, Shaw GJ, Zemlan FP. Serum cleaved tau does not predict postconcussion syndrome after mild traumatic brain injury. Am J Emerg Med 2008; 26: 763-768.
  • Ost M, Nylen K. Initial CSF total Tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 2006; 67: 1600-1604.
  • Shahim P, Tegner Y, Wilson DH, Randall J, Skillbäck T, Pazooki D, Kallberg B, et al. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol 2014; 71: 684-692.
  • Rubenstein R, Chang B, Davies P, Wagner AK, Robertson CS, Wang KKW. A novel, ultrasensitive assay for tau: potential for assessing traumatic brain injury in tissues and biofluids. J Neurotrauma 2015; 32: 342-352.
  • Olivera A, Lejbman N, Jeromin A, et al. Peripheral total tau inmilitary personnel who sustain traumatic brain injuries during deployment. JAMA Neurol 2015; 72: 1109-1116.
  • Thomas DG, Palfreyman JW, Ratcliffe JG. Serum-myelin-basic protein assay in diagnosis and prognosis of patients with head injury. Lancet 1978; 1: 113-115.
  • Yamazaki Y, Yada K, Morii S, Kitahara T, Ohwada T. Diagnostic significance of serum neuron-specific enolase and myelin basicprotein assay in patients with acute head injury. Surg Neurol 1995; 43: 267-271.
  • Zelenika D, Grima B, Pessac B. A new family of transcripts of themyelin basic protein gene: expression in brain and in immune system. J Neurochem 1993; 60: 1574-1577.
  • Berger RP, Ta'asan S, Rand A, Lokshin A, Kochanek P. Multiplex assessment of serum biomarker concentrations in well-appearing children with inflicted traumatic brain injury. Pediatr Res 2009; 65: 97-102.
  • Xiaoying W, Jung J, Asahi M, et al. Effects of Matrix Metalloprote-inase-9 Gene Knock-Out on Morphological and Motor Outcomes after Traumatic Brain Injury. J Neurosci 2000; 20: 7037-7042.
  • Liu CL, Chen CC, Lee HC, Cho DY. Matrix metalloproteinase-9 in the ventricular cerebrospinal fluid correlated with the prognosis of traumatic brain injury. Turk Neurosurg 2014; 24: 363-368.
  • Garner CC, Tucker RP, Matus A. Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature 1988; 336: 674-677.
  • Mondello S, Gabrielli A, Catani S, et al. Increased levels of serum MAP-2 at 6-months correlate with improved outcome in survivors of severe traumatic brain injury. Brain Inj 2012; 26: 1629-1635.
  • Papa L, Robertson CS, Wang KKW, et al. Biomarkers improve clinical outcome predictors of mortality following non-penetrating severe traumatic brain injury. Neurocrit Care 2015; 22: 52-64.
  • Tharp WG, Sarkar IN. Origins of amyloid. BMC Genomics 2013; 14: 290.
  • Tsitsopoulos PP, Marklund N. Amyloid-β peptides and tau protein as biomarkers in cerebrospinal and interstitial fluid following traumatic brain injury: a review of experimental and clinical studies. Front Neurol 2013; 4: 79.
  • JohnsonVE, Stewart W, Weber MT, Cullen DK, Siman R, Smith DH. SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury. Acta Neuropathol (Berl) 2016; 131: 115-135.
  • Azizkhani R, Keshavarz E. Investigation of changes in brain natriuretic peptide serum levels and its diagnostic value in patients with mild and moderate head trauma, in patients referred to emergency department of Alzahra Hospital, Isfahan, 2013-2014. Adv Biomed Res 2016; 5: 191.
  • Sviri GE, Soustiel JF, Zaaroor M. Alteration in brain natriuretic peptide (BNP) plasma concentration following severe traumatic brain injury. Acta Neurochir (Wien) 2006; 148: 529-533.
  • James ML, Wang H, Venkatraman T, Song P, Lascola CD, Lasko-witz DT. Brain natriuretic peptide improves long-term functional recovery after acute CNS injury in mice. J Neurotrauma 2010; 27: 217-228.
  • Hulsebosch CE, DeWitt DS, Jenkins LW, Prough DS. Traumatic brain injury in rats results in increased expression of Gap-43 that correlates with behavioral recovery. Neurosci Lett 1998; 255: 83-86.
Anestezi Dergisi-Cover
  • ISSN: 1300-0578
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1993
  • Yayıncı: Betül Kartal
Sayıdaki Diğer Makaleler

HALLUKS VALGUS AMELİYATINDA POPLİTEAL SİYATİK SİNİR BLOĞU İLE AYAK BİLEĞİ SİNİR BLOĞUNUN ETKİNLİĞİ

Ertuğrul KILIÇ

TRANSNAZAL TRANSSFENOİDAL HİPOFİZ CERRAHİSİNDE ERKEN POSTOPERATİF DÖNEMDE HASTA YÖNETİMİ

ÖZGÜR KARDEŞ, EMRE DURDAĞ, SONER ÇİVİ, Halil Ibrahim SUNER, KADİR TUFAN, MELEK EDA ERTÖRER, ÖZLEM ÖZMETE

OPERASYON ODASINDA STRES: AC‹L VE ELEKT‹F CERRAH‹LER

Salih USLU, Şebnem ATICI

BÜYÜK BİR EĞİTİM VE ARAŞTIRMA HASTANESİNİN MAVİ KOD VERİLERİNİN DEĞERLENDİRİLMESİ: KATKI VE EKSİKLİKLER

Müge ÇAKIRCA, Oya KILCI

TRAVMATİK BEYİN HASARINDA BİYOBELİRTEÇLER

Murat Türkeün ILGINEL, DEMET LAFLI TUNAY, YASEMİN GÜNEŞ

ELEKTİF ENDOVASKÜLER SEREBRAL ANEVRİZMA TEDAVİSİ SONRASI YOĞUN BAKIM TAKİBİ GEREKLİ MİDİR?

SONER ÇİVİ, EMRE DURDAĞ, ÇAĞATAY ANDİÇ, Aslı KARSLI, Halil Ibrahim SUNER, ÖZGÜR KARDEŞ, KADİR TUFAN, Şule AKIN ENES

THE INCIDENCE OF PSEUDOCHOLINESTERASE DEFICIENCY AND CONTRIBUTING FACTORS IN PEDIATRIC PATIENTS IN TURKEY

Sengül ÖZMERT, Feyza SEVER, Sevil TOKAT, Sibel SAYDAM, Mine AKIN, Gülşen KESKİN, Devrim Tanıl KURT, Murat KIZILGÜN, Arif Osman TOKAT

POSTOPERATİF BULANTI VE KUSMA

Bahar SAKIZCI UYAR, Aslı DÖNMEZ

TÜRK‹YE'DE PED‹YATR‹K HASTALARDA PSÖDOKOL‹NESTERAZ EKS‹KL‹⁄‹ VE KATKIDA BULUNAN FAKTÖRLER‹N ‹NS‹DANSI

Feyza SEVER, Sevil TOKAT, Mine AKIN, Devrim Tanıl KURT, Gülsen KESKİN, Sibel SAYDAM, Sengül ÖZMERT, Murat KIZILGÜN, Arif Osman TOKAT

THE USE OF SUGAMMADEX IN A PEDIATRIC PATIENT WITH TAY SACHS SYNDROME

Gozen OKSUZ, MAHMUT ARSLAN, AYKUT URFALIOĞLU, Gökçe GİŞİ, BORA BİLAL