Spermdeki odorant reseptörlerin rolü ve infertilite ile ilişkisi

Fertilizasyon sürecinde memeli spermlerinin oositin yerini tespit etme- si, flagellar hareketi düzenleyen, hem fiziksel hem de kimyasal ipuçla- rına bağlıdır. Bu işaretlerin nasıl tespit edildiği ve hareketin yönünü nasıl belirlediği büyük oranda bilinmemektedir. Odorant reseptörler (OR) hücre zarında bulunan ve koku moleküllerinin tespitinden so- rumlu reseptörlerdir ve insan kemoreseptörlerinin en büyük grubunu oluştururlar. Olfaktör duyu sistemi dışında testis ve sperm gibi çeşitli ektopik dokularda da OR’ler bulunmaktadır. Spermlerin kadın üreme sisteminde oositi bulabilmesi için sperm yüzeyinde belirli kemoresep- törlerin eksprese edilmesi gereklidir. Bu ektopik OR’lerin fertilizasyon sırasında kemotaksiste rolü olabileceği öne sürülmüştür. Spermin oosite yolculuğu sırasında kemotaksiste probleme yol açabilecek olası bir kusur infertiliteye neden olabilir. Erkek infertilite nedenlerinin yaklaşık ola- rak %50’si idiyopatik olup olası nedenlerden bir kısmını OR kusurları oluşturabilir. Bu derlemede, spermde bulunan OR’ler ve hastalıklar ile ilişkisi ele alınmıştır.

The role of sperm odorant receptors and its relationship with infertility

During the fertilization process, determination of the location of the oocyte by the sperm depends on both physical and chemical cues that regulate flagellar movement. How these signs are detected and how they determine the direction of movement is largely unknown. Odorant receptors (OR) are the receptors located on the cell membrane responsible for detecting odor molecules and they constitute the largest group of human chemoreceptors. Apart from the olfactory sensory system, ORs are also found in various ectopic tissues such as testis and sperm. In order for the sperm to find the oocyte in the female reproductive system, certain chemoreceptors must be expressed on the sperm surface. It has been suggested that these ectopic ORs may have a role in chemotaxis during fertilization. A possible defect that may cause problems in chemotaxis during the sperm’s journey to the oocyte may cause infertility. As it is known, about 50% of infertility causes are idiopathic, and OR defects may constitute some of the possible causes. In this review, ORs in sperm and their relationship with diseases are discussed.

___

  • 1. Bahat A, Tur-Kaspa I, Gakamsky A, Giojalas LC, Breitbart H, Eisenbach M. Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat Med. 2003;9:149–50. [CrossRef ]
  • 2. Publicover S, Harper C V, Barratt C. [Ca 2+] i signalling in sperm- making the most of what you’ve got. Nat Cell Biol. 2007;9:235– 42. [CrossRef ]
  • 3. Eisenbach M, Giojalas LC. Sperm guidance in mammals-an unpaved road to the egg. Nat Rev Mol Cell Biol. 2006;7:276–85. [CrossRef ]
  • 4. Spehr M, Schwane K, Riffell JA, Zimmer RK, Hatt H. Odorant receptors and olfactory-like signaling mechanisms in mammalian sperm. Mol Cell Endocrinol. 2006;250:128–36. [CrossRef ]
  • 5. Preston RR, Wilson TE. Physiology (Lippincott’s Illustrated Reviews). Harvey RA, ed. USA: Lippincott Williams & Wilkins, 2012.
  • 6. Parmentier M, Libert F, Schurmans S, Schiffmann S, Lefort A, Eggerickx D, et al. Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature. 1992;355:453–5. [CrossRef ]
  • 7. Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M. Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species. Genomics. 1997;39:239–46. [CrossRef ]
  • 8. Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M. Molecular cloning and chromosomal mapping of olfactory receptor genes expressed in the male germ line: evidence for their wide distribution in the human genome. Biochem Biophys Res Commun. 1997;237:283–7. [CrossRef ]
  • 9. Feldmesser E, Olender T, Khen M, Yanai I, Ophir R, Lancet D. Widespread ectopic expression of olfactory receptor genes. BMC Genomics. 2006;7:121. [CrossRef ]
  • 10. Xu LL, Stackhouse BG, Florence K, Zhang W, Shanmugam N, Sesterhenn IA, et al. PSGR, a novel prostate-specific gene with homology to a G protein-coupled receptor, is overexpressed in prostate cancer. Cancer Res. 2000;60:6568–72. https://pubmed. ncbi.nlm.nih.gov/11118034/
  • 11. Xia C, Ma W, Wang F, Hua S, Liu M. Identification of a prostate- specific G-protein coupled receptor in prostate cancer. Oncogene. 2001;20:5903–7. [CrossRef ]
  • 12. Gaudin J-C, Breuils L, Haertlé T. Mouse orthologs of human olfactory-like receptors expressed in the tongue. Gene. 2006;381:42–8. [CrossRef ]
  • 13. Durzyński Ł, Gaudin J-C, Myga M, Szydłowski J, Goździcka- Józefiak A, Haertlé T. Olfactory-like receptor cDNAs are present in human lingual cDNA libraries. Biochem Biophys Res Commun. 2005;333:264–72. [CrossRef ]
  • 14. Gaudin J-C, Breuils L, Haertlé T. New GPCRs from a human lingual cDNA library. Chem Senses. 2001;26:1157–66. [CrossRef ]
  • 15. Feingold EA, Penny LA, Nienhuis AW, Forget BG. An olfactory receptor gene is located in the extended human β-globin gene cluster and is expressed in erythroid cells. Genomics. 1999;61:15– 23. [CrossRef ]
  • 16. Drutel G, Arrang J-M, Diaz J, Wisnewsky C, Schwartz K, Schwartz J-C. Cloning of OL1, a putative olfactory receptor and its expression in the developing rat heart. Recept Channels. 1995;3:33–40. https://pubmed.ncbi.nlm.nih.gov/8589991/
  • 17. De la Cruz O, Blekhman R, Zhang X, Nicolae D, Firestein S, Gilad Y. A signature of evolutionary constraint on a subset of ectopically expressed olfactory receptor genes. Mol Biol Evol. 2009;26:491–4. [CrossRef ]
  • 18. Griffin CA, Kafadar KA, Pavlath GK. MOR23 promotes muscle regeneration and regulates cell adhesion and migration. Dev Cell. 2009;17:649–61. [CrossRef ]
  • 19. Busse D, Kudella P, Grüning N-M, Gisselmann G, Ständer S, Luger T, et al. A synthetic sandalwood odorant induces wound- healing processes in human keratinocytes via the olfactory receptor OR2AT4. J Investig Dermatol. 2014;134:2823–32. [CrossRef ]
  • 20. Flegel C, Manteniotis S, Osthold S, Hatt H, Gisselmann G. Expression profile of ectopic olfactory receptors determined by deep sequencing. PloS One. 2013;8:e55368. [CrossRef ]
  • 21. Itakura S, Ohno K, Ueki T, Sato K, Kanayama N. Expression of Golf in the rat placenta: Possible implication in olfactory receptor transduction. Placenta. 2006;27:103–8. [CrossRef ]
  • 22. Dreyer WJ. The area code hypothesis revisited: olfactory receptors and other related transmembrane receptors may function as the last digits in a cell surface code for assembling embryos. Proc Natl Acad Sci U S A. 1998;95:9072–7. [CrossRef ]
  • 23. Pluznick JL, Zou D-J, Zhang X, Yan Q, Rodriguez-Gil DJ, Eisner C, et al. Functional expression of the olfactory signaling system in the kidney. Proc Natl Acad Sci U S A. 2009;106:2059–64. [CrossRef ]
  • 24. Pluznick JL. Renal and cardiovascular sensory receptors and blood pressure regulation. Am J Physiol Renal Physiol. 2013;305:F439- 44. [CrossRef ]
  • 25. Rajkumar P, Aisenberg WH, Acres OW, Protzko RJ, Pluznick JL. Identification and characterization of novel renal sensory receptors. PLoS One. 2014;e111053. [CrossRef ]
  • 26. Zhang X, De la Cruz O, Pinto JM, Nicolae D, Firestein S, Gilad Y. Characterizing the expression of the human olfactory receptor gene family using a novel DNA microarray. Genom Biol. 2007;8:R86. [CrossRef ]
  • 27. Garcia-Esparcia P, Schlüter A, Carmona M, Moreno J, Ansoleaga B, Torrejón-Escribano B, et al. Functional genomics reveals dysregulation of cortical olfactory receptors in Parkinson disease: novel putative chemoreceptors in the human brain. J Neuropathol Exp Neurol. 2013;72:524–39. [CrossRef ]
  • 28. Braun T, Voland P, Kunz L, Prinz C, Gratzl M. Enterochromaffin cells of the human gut: sensors for spices and odorants. Gastroenterology. 2007;132:1890–901. [CrossRef ]
  • 29. Zhang X, Bedigian A V, Wang W, Eggert US. G protein‐coupled receptors participate in cytokinesis. Cytoskeleton. 2012;69:810–8. [CrossRef ]
  • 30. Pavlath GK. A new function for odorant receptors: MOR23 is necessary for normal tissue repair in skeletal muscle. Cell Adh Migr. 2010;4:502–6. [CrossRef ]
  • 31. Kim S-H, Yoon YC, Lee AS, Kang NN, Koo JH, Rhyu M-R, Park J-H. Expression of human olfactory receptor 10J5 in heart aorta, coronary artery, and endothelial cells and its functional role in angiogenesis. Biochem Biophys Res Commun. 2015;460:404–8. [CrossRef ]
  • 32. Gong L, Chen Q, Gu X, Li S. Expression and identification of olfactory receptors in sciatic nerve and dorsal root ganglia of rats. Neurosci Lett. 2015;600:171–5. [CrossRef ]
  • 33. Masjedi S, Zwiebel LJ, Giorgio TD. Olfactory receptor gene abundance in invasive breast carcinoma. Sci Rep. 2019;9:13736. [CrossRef ]
  • 34. Sanz G, Leray I, Dewaele A, Sobilo J, Lerondel S, Bouet S, et al. Promotion of cancer cell invasiveness and metastasis emergence caused by olfactory receptor stimulation. PloS One. 2014;9:e85110. [CrossRef ]
  • 35. Glusman G, Yanai I, Rubin I, Lancet D. The complete human olfactory subgenome. Genom Res. 2001;11:685–702. [CrossRef ]
  • 36. Malnic B, Godfrey PA, Buck LB. The human olfactory receptor gene family. Proc Natl Acad Sci U S A. 2004;101:2584–9. [CrossRef ]
  • 37. Hoover KC. Evolution of olfactory receptors. In: Crasto C, editor. Olfactory Receptors. Methods in Molecular Biology (Methods and Protocols), vol 1003. Totowa, NJ: Humana Press; 2013. p.241–9. [CrossRef ]
  • 38. Griswold MD. Interactions between germ cells and Sertoli cells in the testis. Biol Reprod. 1995;52:211–6. [CrossRef ]
  • 39. Dierich A, Sairam MR, Monaco L, Fimia GM, Gansmuller A, LeMeur M, Sassone-Corsi P. Impairing follicle-stimulating hormone (FSH) signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci U S A. 1998;95:13612–7. [CrossRef ]
  • 40. Spehr M, Gisselmann G, Poplawski A, et al. Identification of a Testicular Odorant Receptor Mediating Human Sperm Chemotaxis. Science. 2003;299:2054–8. [CrossRef ]
  • 41. Veitinger T, Riffell JR, Veitinger S, Nascimento JM, Triller A, Chandsawangbhuwana C, et al. Chemosensory Ca2+ dynamics correlate with diverse behavioral phenotypes in human sperm. J Biol Chem. 2011;286:17311–25. [CrossRef ]
  • 42. Brenker C, Goodwin N, Weyand I, Kashikar ND, Naruse M, Krähling M, et al. The CatSper channel: a polymodal chemosensor in human sperm. EMBO J. 2012;31:1654–65. [CrossRef ]
  • 43. Neuhaus EM, Mashukova A, Barbour J, Wolters D, Hatt H. Novel function of β-arrestin2 in the nucleus of mature spermatozoa. J Cell Sci. 2006;119:3047–56. [CrossRef ]
  • 44. Harper CV, Kirkman-Brown JC, Barratt CLR, Publicover SJ. Encoding of progesterone stimulus intensity by intracellular [Ca2+] ([Ca2+] i) in human spermatozoa. Biochem J. 2003;372:407–17. [CrossRef ]
  • 45. Publicover SJ, Giojalas LC, Teves ME, Machado de Oliveira GS, Morales Garcia AA, Robert Barratt CL, Harper CV. Ca2+ signalling in the control of motility and guidance in mammalian sperm. Front Biosci. 2008;13:5623–37. [CrossRef ]
  • 46. Fukuda N, Touhara K. Developmental expression patterns of testicular olfactory receptor genes during mouse spermatogenesis. Genes Cells. 2006;11:71–81. [CrossRef ]
  • 47. Flegel C, Vogel F, Hofreuter A, Schreiner BS, Osthold S, Veitinger S, et al. Characterization of the olfactory receptors expressed in human spermatozoa. Front Mol Biosci. 2016;2:73. [CrossRef ]
  • 48. Zhou B, Irwanto A, Guo Y-M, Bei J-X, Wu Q, Chen G, et al. Exome sequencing and digital PCR analyses reveal novel mutated genes related to the metastasis of pancreatic ductal adenocarcinoma. Cancer Biol Ther. 2012;13:871–9. [CrossRef ]
  • 49. Ma X, Guan L, Wu W, Zhang Y, Zheng W, Gao Y-T, et al. Whole- exome sequencing identifies OR2W3 mutation as a cause of autosomal dominant retinitis pigmentosa. Sci Rep. 2015;5:9236. [CrossRef ]
  • 50. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347. [CrossRef ]
  • 51. Vanti WB, Nguyen T, Cheng R, Lynch KR, George SR, O’Dowd BF. Novel human G-protein-coupled receptors. Biochem Biophys Res Commun. 2003;305:67–71. [CrossRef ]
  • 52. Wang J, Weng J, Cai Y, Penland R, Liu M, Ittmann M. The prostate‐specific G‐protein coupled receptors PSGR and PSGR2 are prostate cancer biomarkers that are complementary to α‐ methylacyl‐CoA racemase. Prostate. 2006;66:847–57. [CrossRef ]
  • 53. Cui T, Tsolakis A V, Li S-C, Cunningham JL, Lind T, Öberg K, Giandomenico V. Olfactory receptor 51E1 protein as a potential novel tissue biomarker for small intestine neuroendocrine carcinomas. Eur J Endocrinol. 2013;168:253–61. [CrossRef ]
  • 54. Leja J, Essaghir A, Essand M, Wester K, Oberg K, Tötterman TH, et al. Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas. Mod Pathol. 2009;22:261–72. [CrossRef ]
  • 55. Weng J, Wang J, Hu X, Wang F, Ittmann M, Liu M. PSGR2, a novel G‐protein coupled receptor, is overexpressed in human prostate cancer. Int J Cancer. 2006;118:1471–80. [CrossRef ]
  • 56. Giandomenico V, Cui T, Grimelius L, Öberg K, Pelosi G, Tsolakis AV. Olfactory Receptor 51E1 as a Novel Target for Diagnosis in Somatostatin Receptor Negative Lung Carcinoids. J Mol Endocrinol. 2013;51:277–86. [CrossRef ]
  • 57. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A. 2013;110:4410–5. [CrossRef ]
  • 58. Neuhaus EM, Zhang W, Gelis L, Deng Y, Noldus J, Hatt H. Activation of an olfactory receptor inhibits proliferation of prostate cancer cells. J Biol Chem. 2009;284:16218–25. [CrossRef ]
  • 59. Rodriguez M, Luo W, Weng J, Zeng L, Yi Z, Siwko S, Liu M. PSGR promotes prostatic intraepithelial neoplasia and prostate cancer xenograft growth through NF-κB. Oncogenesis. 2014;3:e114. [CrossRef
  • 60. Ashida S, Nakagawa H, Katagiri T, Furihata M, Iiizumi M, Anazawa Y, et al. Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs. Cancer Res. 2004;64:5963–72. [CrossRef ]
  • 61. Pelosi P, Pisanelli AM, Baldaccini NE, Gagliardo A. Binding of [3H]-2-isobutyl-3-methoxypyrazine to cow olfactory mucosa. Chem Senses. 1981;6:77–85. [CrossRef ]
  • 62. Bignetti E, Cavaggioni A, Pelosi P, Persaud KC, Sorbi RT, Tirindelli R. Purification and characterisation of an odorant‐binding protein from cow nasal tissue. Eur J Biochem. 1985;149:227–31. [CrossRef ]
  • 63. Pevsner J, Trifiletti RR, Strittmatter SM, Snyder SH. Isolation and characterization of an olfactory receptor protein for odorant pyrazines. Proc Natl Acad Sci U S A. 1985;82:3050–4. [CrossRef ]
  • 64. Pelosi P. Perireceptor events in olfaction. J Neurobiol. 1996;30:3– 19. [CrossRef ]
  • 65. Tegoni M, Pelosi P, Vincent F, Spinelli S, Campanacci V, Grolli S, et al. Mammalian odorant binding proteins. Biochim Biophys Acta (BBA)-Protein Struct Mol Enzymol. 2000;1482:229–40. [CrossRef ]
  • 66. Monaco HL, Rizzi M, Coda A. Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science. 1995;268:1039–41. [CrossRef ]
  • 67. Sawyer L, Kontopidis G. The core lipocalin, bovine β-lactoglobulin. Biochim Biophys Acta (BBA)-Protein Struct Mol Enzymol. 2000;1482:136–48. [CrossRef ]
  • 68. Flower DR. The lipocalin protein family: structure and function. Biochem J. 1996;318:1–14. [CrossRef ]
  • 69. Flower DR. Experimentally determined lipocalin structures. Biochim Biophys Acta (BBA)-Protein Struct Mol Enzymol. 2000;1482:46–56. [CrossRef ]
  • 70. Pevsner J, Hou V, Snowman AM, Snyder SH. Odorant-binding protein. Characterization of ligand binding. J Biol Chem. 1990;265:6118–25. [CrossRef ]
  • 71. Löbel D, Marchese S, Krieger J, Pelosi P, Breer H. Subtypes of odorant‐binding proteins: Heterologous expression and ligand binding. Eur J Biochem. 1998;254:318–24. [CrossRef ]
  • 72. Böcskei Z, Groom CR, Flower DR, Wright CE, Phillips SE, Cavaggioni A, et al. Pheromone binding to two rodent urinary proteins revealed by X-ray crystallography. Nature. 1992;360:186– 8. [CrossRef ]
  • 73. Hurst JL, Payne CE, Nevison CM, Marie AD, Humphries RE, Robertson DH, et al. Individual recognition in mice mediated by major urinary proteins. Nature. 2001;414:631–4. [CrossRef ]
  • 74. Robertson DHL, Beynon RJ, Evershed RP. Extraction, characterization, and binding analysis of two pheromonally active ligands associated with major urinary protein of house mouse (Mus musculus). J Chem Ecol. 1993;19:1405–16. [CrossRef ]
  • 75. Spinelli S, Vincent F, Pelosi P, Tegoni M, Cambillau C. Boar salivary lipocalin: Three‐dimensional X‐ray structure and androstenol/androstenone docking simulations. Eur J Biochem. 2002;269:2449–56. [CrossRef ]
  • 76. Marchese S, Pes D, Scaloni A, Carbone V, Pelosi P. Lipocalins of boar salivary glands binding odours and pheromones. Eur J Biochem. 1998;252:563–8. [CrossRef ]
  • 77. Singer AG, Macrides F, Clancy AN, Agosta WC. Purification and analysis of a proteinaceous aphrodisiac pheromone from hamster vaginal discharge. J Biol Chem. 1986;261:13323–6. [CrossRef ]
  • 78. Vincent F, Löbel D, Brown K, Spinelli S, Grote P, Breer H, et al. Crystal structure of aphrodisin, a sex pheromone from female hamster. J Mol Biol. 2001;305:459–69. [CrossRef ]
  • 79. Mastrogiacomo R, Chiara D, Niccolini A, Serra A, Gazzano A, Scaloni A, Pelosi P. An odorant-binding protein is abundantly expressed in the nose and in the seminal fluid of the rabbit. PloS One. 2014;9:e111932. [CrossRef ]
  • 80. Asai H, Kasai H, Matsuda Y, Yamazaki N, Nagawa F, Sakano H, Tsuboi A. Genomic structure and transcription of a murine odorant receptor gene: differential initiation of transcription in the olfactory and testicular cells. Biochem Biophys Res Commun. 1996;221:240–7. [CrossRef ]
  • 81. Touhara K, Sengoku S, Inaki K, Tsuboi A, Hirono J, Sato T, et al. Functional identification and reconstitution of an odorant receptor in single olfactory neurons. Proc Natl Acad Sci U S A. 1999;96:4040–5. [CrossRef ]
  • 82. Fukuda N, Yomogida K, Okabe M, Touhara K. Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility. J Cell Sci. 2004;117:5835–45. [CrossRef ]
  • 83. Ottaviano G, Zuccarello D, Menegazzo M, Perilli L, Marioni G, Frigo AC, et al. Human olfactory sensitivity for bourgeonal and male infertility: a preliminary investigation. Eur Arch Otorhinolaryngol. 2013;270:3079–86. [CrossRef ]
  • 84. Clapham DE. Calcium signaling. Cell. 2007;131:1047–58. [CrossRef ]
  • 85. Dascal N. Ion-channel regulation by G proteins. Trends Endocrinol Metab. 2001;12:391–8. [CrossRef ]
  • 86. Sun Y, McGarrigle D, Huang X-Y. When a G protein-coupled receptor does not couple to a G protein. Mol BioSyst. 2007;3:849– 54. [CrossRef ]
  • 87. Spehr J, Gelis L, Osterloh M, Oberland S, Hatt H, Spehr M, Neuhaus EM. G protein-coupled receptor signaling via Src kinase induces endogenous human transient receptor potential vanilloid type 6(TRPV6) channel activation. J Biol Chem. 2011;286:13184– 92. [CrossRef ]
  • 88. Hasin-Brumshtein Y, Lancet D, Olender T. Human olfaction: from genomic variation to phenotypic diversity. Trends Genet. 2009;25:178–84. [CrossRef ]
  • 89. Nozawa M, Kawahara Y, Nei M. Genomic drift and copy number variation of sensory receptor genes in humans. Proc Natl Acad Sci U S A. 2007;104:20421–6. [CrossRef ]
  • 90. Young JM, Endicott RM, Parghi SS, Walker M, Kidd JM, Trask BJ. Extensive copy-number variation of the human olfactory receptor gene family. Am J Hum Genet. 2008;83:228–42. [CrossRef ]
  • 91. Sinding C, Kemper E, Spornraft-Ragaller P, Hummel T. Decreased perception of bourgeonal may be linked to male idiopathic infertility. Chem Senses. 2013;38:439–45. [CrossRef ]
  • 92. Teves ME, Guidobaldi HA, Uñates DR, Sanchez R, Miska W, Publicover SJ, et al. Molecular mechanism for human sperm chemotaxis mediated by progesterone. PloS One. 2009;4: e8211. [CrossRef ]
  • 93. Sun F, Bahat A, Gakamsky A, et al. Human sperm chemotaxis: both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum Reprod. 2005;20:761–7. [CrossRef ]
  • 94. Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum reprod. 2007;22:1506–12. [CrossRef ]
  • 95. Rives N. Y chromosome microdeletions and alterations of spermatogenesis, patient approach and genetic counseling. Ann Endocrinol (Paris). 2014;75:112–4. [CrossRef ]
  • 96. Roy A, Lin Y-N, Matzuk MM. Genetics of idiopathic male infertility. In: Carrell DT, editor. The Genetics of Male Infertility. Humana Press. [CrossRef ]
  • 97. Hotaling JM. Genetics of male infertility. Urol Clin North Am. 2014;41:1–17. [CrossRef ]
  • 98. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K. Modulation of microRNA processing by p53. Nature. 2009;460:529–33. [CrossRef ]
  • 99. Tüttelmann F, Simoni M, Kliesch S, Ledig S, Dworniczak B, Wieacker P, Röpke A. Copy number variants in patients with severe oligozoospermia and Sertoli-cell-only syndrome. PloS One. 2011;6:e19426. [CrossRef ]
  • 100.Lopes AM, Aston KI, Thompson E, Carvalho F, Gonçalves J, Huang N, et al. Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1. PLoS Genet. 2013;9: e1003349. [CrossRef ]
  • 101. Teng Y-N, Chang Y-P, Tseng JT, Kuo P-H, Lee I-W, Lee M-S, Kuo P-L. A single-nucleotide polymorphism of the DAZL gene promoter confers susceptibility to spermatogenic failure in the Taiwanese Han. Hum Reprod. 2012;27:2857–65. [CrossRef ]
  • 102. Wu W, Lu J, Tang Q, Zhang S, Yuan B, Li J, et al. GSTM1 and GSTT1 null polymorphisms and male infertility risk: an updated meta-analysis encompassing 6934 subjects. Sci Rep. 2013;3:1–11. [CrossRef ]
  • 103. Gunes S, Al-Sadaan M, Agarwal A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod Biomed Online. 2015;31:309–19. [CrossRef ]
  • 104. Abhari A, Zarghami N, Farzadi L, Nouri M, Shahnazi V. Altered of microRNA expression level in oligospermic patients. Iran J Reprod Med. 2014;12:681–6. https://www.ncbi.nlm.nih.gov/labs/pmc/ articles/PMC4248154/
  • 105. Jungwirth A, Giwercman A, Tournaye H, Diemer T, Kopa Z, Dohle G, et al. European Association of Urology guidelines on Male Infertility: the 2012 update. Eur Urol. 2012;62:324–32. [CrossRef ]
  • 106. Harton GL, Tempest HG. Chromosomal disorders and male infertility. Asian J Androl. 2012;14:32–9. [CrossRef ]
  • 107. Gunes S, Arslan MA, Hekim GN, Asci R. The role of epigenetics in idiopathic male infertility. J Assist Reprod Genet. 2016;33:553– 69. [CrossRef ]
  • 108.Olsson P, Laska M. Human male superiority in olfactory sensitivity to the sperm attractant odorant bourgeonal. Chem Senses. 2010;35:427–32. [CrossRef
Androloji Bülteni-Cover
  • ISSN: 2587-2524
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1999
  • Yayıncı: Turgay Arık