Toprağın ısısal yayınımının fonksiyonel değişimi ve toprak sıcaklığına etkisi

Toprak sıcaklığının izlenmesinde ısısal yayınım önemli bir parametredir. Bu çalışmada, ısısal yayınım katsayısının deneysel ve fonksiyonel ilişkilere göre elde edilen değerlerine bağlı olarak derinlik boyunca toprak sıcaklıkları belirlenmiş ve karşılaştırılmıştır. Samsun İli Bafra Meteoroloji İstasyonunun Mayıs-Temmuz 2012 aylarındaki ortalama günlük toprak sıcaklık değerleri için 5-10; 10-20; 20-50; 50-100 cm toprak katmanlarının ortalama ısısal yayınım katsayıları 3.65·10-6; 7.27·10-6; 12.82·10-6; 16.68·10-6 m2 sn-1 olarak hesaplanmıştır. Isısal yayınım ile toprak derinliği arasındaki ilişki doğrusal, eksponansiyel, üstel ve parabolik fonksiyonlar ile ifade edilmiştir. Isısal yayınıma ait deneysel (meteorolojik) veriler ile fonksiyonlardan hesaplanan değerler arasındaki ortalama nispi hatalar %7.79 ve %18.64 arasında değiştiği ve parabolik fonksiyonla yapılan hesaplamada nispi hatanın en düşük olduğu bulunmuştur. Fonksiyonlara bağlı olarak bulunan ısısal yayınım katsayılarına göre hesaplanan sıcaklık değerleri ile deneysel sıcaklık değerleri arasındaki nispi hatalar ise %2.50 ve %2.83 arasında değişim göstermiştir. Parabolik fonksiyon ile belirlenen ısısal yayınım katsayısının kullanılmasıyla hesaplanan toprak sıcaklık değerleri en düşük nispi hatayı vermiştir.

Functional changes of soil heat diffusivity and effect on soil temperature

Heat diffusivity is an important parameter for monitoring soil temperature. In this study, soil temperatures througout to soil depth were determined with respect to the heat diffusivity coefficient values measured and obtained with functionel relations, and compared eachother. Mean heat diffusivity values for 5-10; 10-20; 20-50; 50-100 cm soil layers were estimated as 3.65·10-6; 7.27·10-6; 12.82·10-6; 16.68·10-6 m2sn-1 according to mean daily soil temperature values of Bafra Meteorology Station in Samsun between May-July 2012, respectively. Relationships between heat diffusivity and soil depth were explained with linear, exponential, power and parabolic functions. Mean relative errors between heat diffusivity values estimated from experimental (meteorological) data and functions varied between 7.79% and 18.64%; and it was found that the relative error estimated using parabolic function was the lowest. Mean relative errors between experimental temperature values and temperature values estimated using heat diffusivity values of functions varied between 2.50% and 2.83%. The lowest relative error was found in soil temperatures estimated using the heat diffusivity values of parabolic function.

___

  • Arias-Penas, D., Castro-Garcia, M.P., Rey-Ronco, M.A., Alonso-Sanchez, T., 2015. Determining the thermal diffusivity of the ground based on subsoiltemperatures. Preliminary results of an experimental geothermalborehole study Q-THERMIE-UNIOVI. Geothermics, 54: 35-42.
  • Arkhangelskaya, T.A., 2014. Diversity of thermal conditions within the paleocryogenic soil complexes of the East European Plain: The discussion of key factors and mathematical modeling. Geoderma, 213: 608-616.
  • Badache, M., Eslami-Nejad; P., Ouzzane, M., Aidoun, Z., Lamarche, L., 2016. A new modeling approach for improved ground temperature profile determination. Renewable Energy, 85: 436-444.
  • Bozzoli, F., Pagliarini, G., Rainieri, S., Schiavi, L., 2011. Estimation of soil and grout thermal properties through a TSPEP (two-step parameter estimation procedure) applied to TRT (thermal response test) data. Energy, 36(2): 839- 846.
  • Chung, S.O., Horton, R., 1987. Soil heat and water flow with a partia surface mulch. Water Resour. Res., 23(12): 2175- 2186.
  • Cichota, R., Elias, E.A., de Jong van Lier, Q., 2004. Testing a finitedifference model for soil heat transfer by comparing numerical and analytical solutions. Environmental Modelling & Software, 19: 495-506.
  • Correia, A., Vieira, G., Ramos, M., 2012. Thermal conductivity and thermal diffusivity of cores from a 26 meter deep borehole drilled in Livingston Island, Maritime Antarctic, Geomorphology, 155-156: 7-11.
  • Cote, J., Konard, J.M., 2005. Thermal conductivity of base- course materials. Canadian Geotechnical Journal, 42: 61- 78.
  • de Vries, D.A., 1963. Thermal properties of soils. In: van Wijk, W. R. (Ed.), Physics of Plant Environment North Holland Publishing Company, Amsterdam, Netherlands, pp. 210-235.
  • Ekberli, İ., 2006. Isı iletkenlik denkleminin çözümüne bağlı olarak topraktaki ısı taşınımına etki yapan bazı parametrelerin incelenmesi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 21(2): 179-189.
  • Ekberli, İ., Gülser, C., Mamedov, A., 2015b. Toprakta bir boyutlu ısı ietkenlik denkleminin incelenmesinde benzerlik teorisinin uygulanması. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 10(2): 69-79.
  • Ekberli, İ., Gülser, C., Özdemir, N., 2015a.Toprakta ısı iletkenliğine etki yapan ısısal parametrelerin teorik incelemesi. Anadolu Tarım Bilimleri Dergisi, 30(3): 300- 306.
  • Ekberli, İ., Gülser, C., Özdemir, N., 2005c. Toprakların termo- fiziksel özellikleri ve ısısal yayınım katsayısının değerlendirilmesi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 20(2): 85-91.
  • Ekberli, İ., Sarılar, Y., 2015a. Toprak sıcaklığı ve ısısal yayınımın belirlenmesi. Anadolu Tarım Bilimleri Dergisi, 30(1): 74-85.
  • Ekberli İ., Sarılar, Y., 2015b. Toprak sıcaklığının profil boyunca sönme derinliğinin ve gecikme zamanının belirlenmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 52(2):219-225.
  • Esen, H., Inalli, M., 2009. In-situ thermal response test for ground source heat pump system in Elazig, Turkey. Energy and Buildings, 41(4): 395-401.
  • Evett, S.R., Agam, N., Kustas, W.P., Colaizzi, P.D., Schwartz, R.C., 2012. Soil profile method for soil thermal diffusivity, conductivity and heat flux: Comparison to soil heat flux plates. Advances in Water Resources, 50: 41-54.
  • Faitli, J., Magyar, T., Erdelyi, A., Muranyi, A., 2015. Characterization of thermal properties of municipal solid waste landfills. Waste Management, 36: 213-221.
  • Gao, Z., Bian, L., Hu, Y., Wan, L., Fan, J., 2007. Determination of soil temperature in an arid region. Journal of Arid Environments, 71: 57-168.
  • Gülser, C., Ekberli, I., 2004. A comparison of estimated and measured diurnal soil temperature through a clay soil depth. Journal of Applied Sciences, 4(3): 418-423.
  • Hillel, D., 1998. Environmental Soil Physics. Academic Press, New York, 771 pp.
  • Hinkel, K.M. 1997. Estimating seasonal values of thermal diffusivity in thawed and frozen soils using temperature time series. Cold Reg. Sci. Technol. 26: 1 -15.
  • Huang, F., Zhan, W., Ju, W., Wang, Z., 2014. Improved reconstruction of soil thermal field using two-depth measurements of soil temperature. Journal of Hydrology, 519: 711-719.
  • Hu, G., Zhao, L., Wu, X., Li, R., Wu, T., Xie, C., Qiao, Y., Shi, J., Li, W., Cheng, G., 2016. New Fourier-series-based analytical solution to the conduction-convection equation to calculate soil temperature, determine soil thermal properties, or estimate water flux. International Journal of Heat and Mass Transfer, 95: 815-823.
  • Hu, P.F., Meng, Q.F., Sun, Q.M., Zhu, N., Guan, C.S., 2012. A method and case study of thermal response test with unstable heat rate. Energy and Buildings, 48: 199-205.
  • Kasubuchi, T., 1984. Heat conduction model of saturated soil and estimation of thermal conductivity of soil solid phase. Soil Science, 138: 240-247. Kurtener D.A., Çudnovski Agrometeorologiçeskiye osnovı teplovoy meliorasii poçv. Leningrad, Gidrometeoizdat, 231s. A.F., 1979.
  • Lei, S., Daniels, J. L., Bian, Z., Wainaina, N., 2011. Improved soil temperature modeling. Environmental Earth Sciences, 62(6): 1123-1130.
  • Lipiec, J., Usowicz, B., Ferrero, A., 2007. Impact of soil compaction and wetness on thermal properties of sloping vineyard soil. International Journal of Heat and Mass Transfer, 50: 3837-3847.
  • Liu, S., 2004. Environmental Physics, Chemical Industry Press, Beijing.
  • Lu, S., Ren, T., Gong, Y., Horton, R., 2007. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Science Society of America Journal, 71: 8-14.
  • McInnes, K.J., Heilman, J.L., Lascano, R.J., 1996. Aerodynamic conductances at the soil surface in a vineyard, Agric. For. Meteorol., 79: 29-37.
  • Monteith, J.L., Unsworth, M.H., 1990. Principles of Environmental Physics. Edward Arnold, London, 291 pp.
  • Nerpin, S.V., Chudnovskii, A.F., 1984. Heat and Mass Transfer in the Plant-Soil-Air System. Translated from Russian. Published for USDA and National Sci. Found., Washington. D.S., by Amerind Publishing Co. Pvt. Ltd., New Delhi, India, 355 pp.
  • Nkongolo, N.V., Johnson, S., Schmidt, K., Eivazi, F., 2010. Greenhouse gases fluxes and soil thermal properties in a pasture in central Missouri. Journal of Environmental Sciences, 22(7): 1029-1039.
  • Özdemir, N., 1998. Toprak fiziği. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi, Ders Kitabı No: 30, s: 191- 209.
  • Rees, S.W., Adjali, M.H., Zhou, Z., 2000. Ground heat transfer effects on the thermal performance of earth- contact structures. Renew. Sustain. Energy Rev., 4: 213- 265.
  • Russell, E.S., Liu, H., Gao, Z., Finn, D., Lamb, B., 2015. Impacts of soil heat flux calculation methods on the surface energy balance closure. Agricultural and Forest Meteorology, 214-215: 189-200.
  • Saito, T., Hamamoto, S., Mon, E.E., Takemura, T., Saito, H., Komatsu, T., Moldrup, P., 2014. Thermal properties of boring core samples from the Kanto area, Japan: Development conductivity and diffusivity. Soils and Foundations, 54(2): 116-125. models for thermal
  • Sesveren, S., Sariyev, A., Tulun, Y., 2015. Amplitude and damping depth in soil solarization under different applications. International soil science congress on "Soil science in international year of soils 2015''. 19-23 October 2015 Sochi, Russia. Article book, pp. 378-381.
  • Stylianou, I.I., Tassou, S., Christodoulides, P., Panayides, I., Florides, G., 2016. Measurement and analysis of thermal properties of rocks for the compilation of geothermal maps of Cyprus. Renewable Energy, 88: 418-429.
  • Sun, B., Xu, X., Lai, Y., Li, D., Wang, S., Zhang, J., 2004. Experimental researches of thermal diffusivity and conductivity in embankment ballast under periodically fluctuating temperature. Cold Regions Science and Technology, 38: 219-227.
  • Şapovalov, V.V., 1962. Vliyaniye peremennogo haraktera koeffiçienta temperaturoprovodnosti poçvı na ee temperaturu. İnjenerno-fiziçeskiy jurnal, 5(1):64-71.
  • Tonietto, J., Carbonneau, A., 2004. A multicriteria climatic classification worldwide, Agric. For. Meteorol., 124: 81-97. for grape-growing regions
  • Trombotto, D., Borzotta, E., 2009. Indicators of present global warming through changes in active layer-thickness, estimation of thermal diffusivity and geomorphological observations in the Morenas Coloradas rockglacier, Central Andes of Mendoza, Argentina. Cold Regions Science and Technology, 55: 321-330.
  • Tu, X., Dai, F., 2008. Analytical solution for one-dimensional heat transfer equation of soil and, evaluation for thermal diffusivity, Chin. J. Geotech. Eng., 30(5): 652-657.
  • Usowicz, B., Lipiec, J., Usowicz, J.B., 2008. Thermal conductivity in relation to porosity and hardness of terrestrial porous media. Planetary and Space Science, 56: 438-447.
  • Voronin, A.D., 1986. Basic Physics of Soils (Mosk. Gos. Univ., Moscow), 246 p. (in Russian)
  • Wang, Z.H., 2012. Reconstruction of soil thermal field from a single depth measurement. Journal of Hydrology, 464- 465: 541-549.
  • Zambra, C.E., Moraga, N.O., 2013. Heat and mass transfer in landfills: Simulation of the pile self-heating and of the soil contamination. International Journal of Heat and Mass Transfer, 66: 324-333.
  • Zhang, T., Osterkamp, T.E., 1995. Considerations in determining thermal diffusivity from temperature time series using finite difference methods. Cold Reg. Sci. Technol., 23: 333-341.
  • Zhang, Y., Gao, P., Yu, Z., Fang, J., Li, C., 2014. Characteristics of ground thermal properties in Harbin, China. Energy and Buildings, 69: 251-259.
  • Zheng, X., Zhang, L., Ren, Q., Qian, H., 2013. A thermal response method of calculating a soil's thermal properties when backfill material information is unavailable. Energy and Buildings, 56: 146-149.
Anadolu Tarım Bilimleri Dergisi-Cover
  • ISSN: 1308-8750
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1986
  • Yayıncı: Ondokuz Mayıs Üniv. Ziraat Fak.
Sayıdaki Diğer Makaleler

Effect of maize/legume intercropping on crop productiviy and soil compaction

Aydın ÜNAY, İlkay Yavaş ÜSTÜNDAĞ

Farklı sitokinin ve şeker türlerinin alev ağacı bitkisinin in vitro çoğaltımına olan etkileri

Hülya Akdemir, Tuğçe Akbulak, Veysel Süzerer, Doğa Kayıhan, İbrahim Koç, Yelda Özden Çiftçi

Mısır/baklagil birlikte ekiminin verimlilik ve toprak sıkışıklığı üzerine etkisi

İlkay Yavaş Üstündağ, Aydın Ünay

Organik domates yetiştiriciliğinde ön bitki ve organik gübre uygulamalarına bağlı olarak toprak mikobiyotasındaki değişiklikler

Berna Tunalı, Gülen Özyazıcı, Aysun Pekşen

Arazi kalite değerlendirme çalışmalarında parametrik yöntem ve deneysel tasarım

Yasemin Şişman, Orhan Dengiz, Aziz Şişman, İnci Demirağ Turan

Samsun ilinde mısır (Zea mays L.) üretim alanlarında enfeksiyon oluşturan virüslerin belirlenmesi

Nazlı Dide Kutluk Yılmaz, Yusuf Toksöz

Çeltik üretiminde alana bağlı olarak makina sayısındaki değişimin doğrusal denklemler yardımı ile incelenmesi

Gıyasettin Çiçek, Sarp Korkut Sümer

Trakya Bölgesinde faaliyet gösteren tarım işletmelerinin karşılaştırmalı ekonomik analizi

Başak Aydın, Gökhan Unakıtan

Cevizde çeşit değiştirme aşılarında anaçlarda tepe kesimi zamanı ve kalınlıklarının aşı başarısı üzerine etkisi

Burak Akyüz, Ahmet Öztürk, Ümit Serdar

Pamukta (Gossypium hirsutum L) ekim zamanının melez gücü (heterosis ve heterobeltiosis) üzerine etkisi

Ramazan Şadet Güvercin, Mustafa Oğlakçı