Characterization of soil profile development on different landscape in semi-arid region of Turkey a case study: Ankara-Soğulca Catchment

Bu çalışma Türkiye’nin yarı kurak bölgesinde yer alan Ankara Soğulca Havzasında toprak profil gelisimi ile arazi şekli arasındaki ilişkinin belirlenmesi amacıyla yürütülmüştür. Çalışma alanında yaygın jeolojik materyaller marn, kireç taşı ve kum taşıdır. Soğulca Havzasının doğu batı doğrultusunda yapılan kesit çalışmasında altı pedon incelenmiştir. Toprakların oluşumlarında topografik pozisyonların toprakların morfolojik, fiziksel ve kimyasal özellikleri üzerinde etkili oldukları belirlenmiştir. Bu nedenle, eğim derecesinin yamaç araziler üzerinde yer alan PI, PII ve PV pedonlarının toprak oluşum işlemleri üzerine önemli faktörlerden birisi olduğu düşünülmektedir. Çünkü topografya veya rölyef topraktan suyun ve diğer maddelerin eklenmesi veya uzaklaşmasınının sağlanmasında etkilidir. Bu topraklar oluşumlarının minimum seviyelerde olmaları nedeniyle genç topraklar olarak tanımlanmakta ve Entisol/Leptosol olarak sınıflandırılmıştır. Ayrıca, taban arazi pozisyonunda ve alluviyal depozitler üzerinde olusan pedon VI, Typic Xerofluvent/Eutric Fluvisol zayıf toprak profil gelişimine sahiptir. Plato düzlüğü üzerinde oluşmuş Inceptisol/Cambisol ve Calcisol (PIII and PIV) en ileri toprak oluşum seviyesine sahiptirler. Inceptisollerin önemli yüzey altı tanı horizonları olarak cambic ve calcic horizonlar tespit edilmiştir. Bu çalışma lokal alanlarda arazi şekillerinin toprak oluşumu ve gelişmesinde gerek doğrudan gerekse de dolaylı olarak kuvvetli etkilerinin olduğunu açıkça göstermiştir.

Türkiye'nin yarıkurak bölgesinde farklı arazi şekilleri üzerinde toprak profil gelişiminin özellikleri pilot çalışma; Ankara-Soğulca Havzası

The main objective of this research was to determine the relations between soil profile development and landscape in Ankara-Sogulca Catchment located in the semiarid region of Turkey. Dominant geological materials are marl, lime stone and sand stone in the study area. Six soil pedons were examined by field investigation on along transect (crosswise from East to West direction) of the Sogulca Catchment. Soil formations were highly associated with topographic positions which have influence on morphological and physico-chemical characteristics of the soils. Therefore, slope degree has been regarded as one of the most important factors that controls the pedogenic process on PI, PII and PV located on hillslope positions. Because, topography or relief affects how water and other material are added to and removed from soils. Thus, they can be defined as young soils due to minimum soil formation and classified as Entisol/Leptosol. In addition, pedon VI, Typic Xerofluvent/Eutric Fluvisol, formed on toeslope position and alluvial deposit has less soil profile development. Inceptisol/Cambisol and Calcisol (PIII and PIV) formed on plateau position had the greatest degree of pedogenesis. It was determined that main subsurface diagnostic horizons of Inceptisol are cambic and calcic horizons. This study clearly showed that landscape position strongly affects soil pedogenetic development either directly or indirectly in the local region.

___

  • Amundson, R. 1994. Factors of Soil Formation. A System of Quantitative Pedology. Foreword by R. Amundson. Dover Publ.Inc. NY.USA., pp:281
  • Arnold, R.W. 2006. Soils : Basic Concepts and Future Challenges, ed. Giacomo Certini and Riccardo Scalenghe. Published by Cambridge University Press, p 1-10.
  • Baskan, O and Dengiz, O. 2008. Comparison of Traditional and Geostatistical Methods to Estimate Soil Erodibility Factor. Arid Land Research and Management 22: 1, 29-45.
  • Birkeland, P.W. 1984. Soils and Geomorphology:
  • Oxford University Press, New York, 372 p.
  • Brady, N.C., Weil, R.R., 2001, The Nature and Properties of Soils (13th ed.): Prentice Hall, Upper Saddle River, NJ, 960 p.
  • Bouyoucos, G.J.1951. A Recalibration of the Hydrometer Method for Making Mechanical Analysis of soils. Agronomy Journal, 43; 435- 438.
  • Daniels, R.B. and R.D. Hammer. 1992. Soil Geomorphology. John Wiley and Sons. New York, pp: 236.Durak, A. and Surucu, A. 2005. Soil Formation on Different Landscape in a Semihumid Region of Turkey. Journal of Agronomy 4(3): 191-195.
  • Dengiz, O., Akgül, S. 2005. Soil erosion risk assessment of the Golbasi Environmental Protection Area and its vicinity using CORINE Model. Turk J. Agric. For. 29, 439-448. Tubitak, Ankara.
  • Dengiz, O., Göl, C., Karaca, S., Yüksel, M. 2006. Effects of Different Landscape Position and Parent Material on Soil Variability and Land Use in Both Sides of Acicay River-Çankırı. International Soil Meeting on Soil Sustaining Life on Earth, Managing Soil and Technology Proceeding Vol. II, 745-751, Sanlıurfa-Turkey.
  • FAO/ISRIC, 2006. World References Base for Soil Resources. World Soil Rep., No,103. Rome, 128 p.
  • Heckrath, G., Djurhuus, J., Quine, T.A., Van Oost, K., Govers, G., Zhang, Y., 2005. Tillage erosion and its effect on soil properties and crop yield in Denmark. J. Environ. Qual. 34, 312–324.
  • Jenny, H. 1980. The Soil Resource. Springer-Verlag, New York, 377 pp.
  • Graham, R.C and Boul, S.W. 1990. Soil-geomorphic Relations on the Blue Ridge Front. II: Soil Characteristics and Pedogenesis. Soil Sci. Soc. Am. J., 54:1367-1377.
  • Graham, R.C. 2006. Basic Concepts and Future Challenges, ed. Giacomo Certini and Riccardo Scalenghe. Published by Cambridge University Press, p 151-163.
  • MTA. 1994. General Directorate of Mining Technical Research. Ankara, Turkey.
  • Nelson, D.W., L.E. Sommers.1982. Total Carbon, Organic Carbon and Organic matter. In: Page, L.A., Miller, R.H., Keeney, D.R (Eds.), Methods of Soil Analysis, Part 2. Chemical and Microbiological Methods (2 nd ed). American Society of Agronomy, Madison, WI, pp 539-579 (1982).
  • Ogg,C.M. and J.C. Baker. 1999. Pedogenesis and Origin of Depply Weathered Soils Formend in Alluvial Fans of Viriginia Blue Ridge. Soil Sci. Soc. Am. J., 63 : 601-606.
  • Papiernik, S.K., Lindstrom, M.J., Schumacher, J.A., Farenhorst, A., Stephans, K.D., Schumacher, T.E., Lobb, D.A., 2005. Variation in soil properties and crop yield across an eroded prairie landscape. J. Soil Water Conserv. 60, 388–395.
  • Pennock, D.J., Anderson, D.W., de Jong, E., 1994. Landscape-scale changes in indicators of soil quality due to cultivation in Saskatchewan, Canada. Geoderma 64, 1–19.
  • Soil Survey Staff.1992. Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey. Soil Surv. Invest. Rep. I. U.S. Gov. Print. Office, Washington D.C. USA.
  • Soil Survey Staff. 1993 Soil Survey Manuel. USDA Handbook. No: 18, Washington D.C. USA.
  • Soil Survey Staff. 1999. Soil taxonomy. A Basic of Soil Classification for Making and Interpreting Soil Survey. USDA Handbook No: 436, Washington D.C.
  • Sommer, M., Gerke, H.H. and Deumlich, D. 2008. Modelling soil landscape genesis-A “time split” approach for hummocky agricultural landscapes. Geoderma 145 (2008) 480–493.
  • Young, F.J. and R.D. Hammer. 2000. Soil-landform Relationships on a Loess-Mamtled Upland Landscape in Missouri. Soil Sci.Soc. Am. J., 64: 1443-1454.