The Effect of Rapamycin on Penicillin-Induced Epileptiform Activity in Rats: An Electrophysiological Study

Amaç: Yeryüzünde yaklaşık elli milyon insan epilepsinin pençesindedir ve bu hastaların büyük bir bölümü şimdiye kadar keşfedilmiş antiepileptik ilaçlara karşı dirençlidir. Bunun yanı sıra, bu ilaçların yan etki profilleri de oldukça geniştir. Memelideki rapamisin hedefi (mTOR) inhibitörü olan rapamisin; antineoplastik, yaşlanmayı geciktirici ve antienflamatuvar etkilere sahiptir. mTOR'un sinir sistemi üzerindeki etkilerine dair çalışmalarda ise nöroprotektif etkisinin olduğu gösterilmiştir. Buna ek olarak, tüberoskleroz hastalarında rapamisin kullanımının epileptik nöbetleri azalttığı bildirilmiştir. Bu çalışmanın amacı mTOR inhibitörü rapamisinin sıçanlarda penisilinle oluşturulmuş deneysel epilepsi üzerindeki akut etkisini araştırmaktır. Gereç ve Yöntemler: Bu çalışmada penisilinle oluşturulmuş deneysel epilepsili kırk adet erişkin erkek Wistar sıçan içeren bir model kullanılmıştır. Söz konusu kırk sıçan; salin, çözücü (dimetilsülfoksit), ve de 0,1 mg/kg, 0,4 mg/kg ve 0,8 mg/kg rapamisin grupları olmak üzere beş gruba ayrıldı. Tüm maddeler intraperitoneal yolla uygulandı. Sıçanlara anestezi için 1,25 g/kg üretan uygulandıktan sonra hayvanların sol kafatası açıldı ve beyin üzerine elektrotlar yerleştirildi. Elektrokortikografi kaydı başlatıldı. Rapamisin uygulamasından iki saat sonra intrakortikal olarak penisilin uygulandı. Penisilin uygulandıktan sonra elektrokortikografi verileri iki saat daha kaydedildi. Bulgular: Rapamisinle tedavi edilen sıçan gruplarında, 0,4 mg/kg ve 0,8 mg/kg rapamisin uygulamaları epileptiform aktivitenin diken-dalga sıklığını ve genliğini anlamlı olarak azaltmıştır. Fakat latensleri karşılaştırıldığında gruplar arasında anlamlı bir fark bulunmamıştır.Tartışma ve Sonuç: Akut rapamisin uygulaması sıçanlarda penisilinle oluşturulmuş epileptiform aktivitenin diken-dalga sıklığını ve diken-dalga genliğini azaltmıştır ve bu bulgular rapamisinin antiepileptojenik bir potansiyele sahip olduğunu göstermektedir

Rapamisinin Sıçanlarda Penisilinle Oluşturulmuş Epileptiform Aktivite Üzerine Etkisi: Bir Elektrofizyolojik Çalışma

Aim: Approximately fifty million people in the world suffer from epilepsy, and a large part of these patients are resistant to antiepileptic drugs discovered so far. In addition, side effect profiles of these drugs are very wide. Rapamycin that is an inhibitor of mammalian target of rapamycin (mTOR) has antineoplastic, aging-retarding, and anti-inflammatory effects. The studies regarding the effects of mTOR on nervous system have shown that it has neuro-protective effects. Moreover, it has been reported that use of rapamycin reduces epileptic seizures in tuberous sclerosis patients. In this study we aimed to investigate acute effects of the mTOR inhibitor rapamycin on penicillin-induced experimental epilepsy in rats.Materials and Methods: In this study, a model of forty adult male Wistar rats with penicillininduced experimental epilepsy was used. The forty rats were divided into five groups, which were saline group, solvent (dimethylsulfoxide) group, and 0.1 mg/kg, 0.4 mg/kg and 0.8 mg/kg rapamycin groups. All substances were administered intraperitoneally. After the administration of 1.25 g/kg urethane for anesthesia, the left part of each rat's skull was opened and electrodes were placed on the brain. Electrocorticography recording was initiated. Penicillin was intracortically administered two hours after the administration of rapamycin. After the administration of penicillin, electrocorticographic data were recorded for another two hours.Results: In rapamycin-treated rat groups, administration of 0.4 mg/kg and 0.8 mg/kg rapamycin significantly reduced epileptic spike-wave frequency and amplitude of epileptiform activity. However, when compared in terms of latency no significant difference was found between the groups.Discussion and Conclusion: Acute administration of rapamycin reduced spike-wave frequency and spike-wave amplitude of penicillin-induced epileptiform activity in the rats, and these findings indicate that rapamycin has an antiepileptogenic potential

___

  • McDaniel SS, Wong M. Therapeutic role of mammalian target of rapamycin (mTOR) inhibition in preventing epileptogenesis, Neurosci Lett. 2011;497(3): 231-9.
  • Ngugi AK, Kariuki SM, Bottomley C, Kleinschmidt I, Sander JW, Newton CR, et al. Incidence of epilepsy: a systematic review and meta-analysis. Neurology. 2011;77(10):1005-12.
  • Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. 1995;270(2):815-22.
  • Cho CH. Frontier of epilepsy research - mTOR signaling pathway. Exp Mol Med. 2011;43(5):231-74.
  • Weber JD, Gutmann DH. Deconvoluting mTOR biology. Cell Cycle. 2012;11(2);236-48.
  • Hung CM, Garcia-Haro L, Sparks CA, Guertin DA. mTOR-dependent cell survival mechanisms. Cold Spring Harb Perspect Biol. 2012;4(12):a008771.
  • Yang Z, Ming XF. mTOR signalling: the molecular inter- face connecting metabolic stress, aging and cardiovascu- lar diseases. Obes Rev. 2012;13(Suppl 2):58-68.
  • Jewell JL, Russell RC, Guan KL. Amino acid sig- nalling upstream of mTOR. Nat Rev Mol Cell Biol. 2013;14(3):133-9.
  • Meng XF, Yu JT, Song JH, Chi S, Tan L. Role of the mTOR signaling pathway in epilepsy. J Neurol Sci. 2013;332(1- 2):4-15.
  • Bateup HS, Johnson CA, Denefrio CL, Saulnier JL, Kornacker K, Sabatini BL. Excitatory/inhibitory syn- aptic imbalance leads to hippocampal hyperexcitabil- ity in mouse models of Tuberous Sclerosis. Neuron. 2013;78(3):510-22.
  • LaSarge CL, Danzer SC. Mechanisms regulating neu- ronal excitability and seizure development following mTOR pathway hyperactivation. Front Mol Neurosci. 2014;7:18.
  • Wong M. Mammalian target of rapamycin (mTOR) in- hibition as a potential antiepileptogenic therapy: from tuberous sclerosis to common acquired epilepsies. Epi- lepsia. 2010;51(1):27-36.
  • Cao R, LI A, Cho HY. mTOR signaling in epilep- togenesis: too much of a good thing? J Neurosci. 2009;29(40):12372-3.
  • Heng K, Haney MM, Buckmaster PS. High-dose ra- pamycin blocks mossy fiber sprouting but not seizures in a mouse model of temporal lobe epilepsy. Epilepsia. 2013;54(9):1535-41.
  • Jaworski J, Sheng M. The growing role of mTOR in neuronal development and plasticity. Mol Neurobiol. 2012;34(3):205-19.
  • Zeng LH, Rensing NR, Wong M. The mammalian tar- get of rapamycin signaling pathway mediates epilepto- genesis in a model of temporal lobe epilepsy. J Neurosci. 2009;29(21):6964-72.
  • Huang X, Zhang H, Yang J, Wu J. Pharmacologi- cal inhibition of the mammalian target of rapamycin pathway suppresses acquired epilepsy. Neurobiol Dis. 2010;40(1):193-9.
  • Sliwa A, Plucinska G, Bednarczyk J, Lukasiuk K. Post- treatment with rapamycin does not prevent epileptogen- esis in the amygdala stimulation model of temporal lobe epilepsy. Neurosci Lett. 2012;509(2):105-9.
  • Way WS, Rozas NS, Wu HC, McKenna J, Reith RM, Hashmi S, et al. The differential effects of prenatal and/ or postnatal rapamycin on neurodevelopmental defects and cognition in a neuroglial mouse model of tuberous sclerosis complex. Hum Mol Genet. 2012;21(14): 3226- 36.
  • Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramar- ski R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis. 2007;26(1):86-93.
  • Kolosova NG, Vitovtov AO, Muraleva NA, Akulov AE, Stefanova NA, Blagosklonny MV, et al. Rapamycin sup- presses brain aging in senescence-accelerated OXYS rats. Aging (Albany NY) 2013;5(6):474-84.
  • Zafar I, Ravichandran K, Belibi FA, Doctor RB, Edelstein CL. Sirolimus attenuates disease progression in an or- thologous mouse model of human autosomal dominant polycystic kidney disease. Kidney Int. 2010;78(8):754- 61.
  • Yildirim M, Marangoz AH, Ayyildiz M, Ankarali S. The interactions of nitric oxide and adenosine on penicillin induced epileptiform activity in rats. Acta Neurobiol Exp. 2011;71(2): 208-19.
  • Chen L, Hu L, Dong JY, Ye Q, Hua N, Wong M, et al. Rapamycin has paradoxical effects on S6 phosphory- lation in rats with and without seizures. Epilepsia. 2012;53(11):2026-33.
  • Zhang Z, Wu X, Duan J, Hinrichs D, Wegmann K, Zhang GL, et al. Low dose rapamycin exacerbates autoimmune experimental uveitis. PLoS One. 2012;7(5):e36589.
  • Hartman AL, Santos P, Dolce A, Hardwick JM. The mTOR inhibitor rapamycin has limited acute anticon- vulsant effects in mice. PLoS One. 2012;7(9):e45156.
  • Zeng LH, Xu L, Gutmann DH, Wong M. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol. 2008;63(4):444-53.
  • Guo D, Zeng L, Brody DL, Wong M. Rapamycin at- tenuates the development of posttraumatic epilepsy in a mouse model of traumatic brain injury. PLoS One. 2013;8(5):e64078.
  • Gebhardt C, Breustedt JM, Nöldner M, Chatterjee SS, Heinemann U. The antiepileptic drug losigamone de- creases the persistent Na+ current in rat hippocampal neurons. Brain Res. 2001;920(1-2):27-31.
  • Wong PT, Tan SF, Lee HS. N-demethylation of meth- yl and dimethyl derivatives of phenytoin and their anticonvulsant activities in mice. Jpn J Pharmacol. 1988;48(4):473-8.
  • Kovácsa Z, Czurkób A, Kékesib KA, Juhász G. The effect of intraperitoneally administered dimethyl sulfoxide on absence-like epileptic activity of freely moving WAG/Rij rats. J Neurosci Methods. 2011;197(1):133-6.
  • Wang Y, Barbaro MF, Baraban SC. A role for the mTOR pathway in surface expression of AMPA receptors. Neu- rosci Lett. 2006;401(1-2):35-9.
  • Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM, et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomato- sis. N Engl J Med. 2008;358(2):140-51.
  • Rauktys A, Lee N, Lee L, Dabora SL Topical rapamy- cin inhibits tuberous sclerosis tumor growth in a nude mouse model. BMC Dermatol. 2008;8(1):1-9.
  • Muncy J, Butler IJ, Koenig MK. Rapamycin reduces sei- zure frequency in tuberous sclerosis complex. J Child Neurol. 2009;24(4):477.
  • Krueger DA, Care MM, Holland K, Agricola K. Everoli- mus for subependymal giant-cell astrocytomas in tuber- ous sclerosis. N Engl J Med. 2010;363(19):1801-11.
  • Sandsmark DK, Pelletier C, Weber JD, Gutmann DH. Mammalian target of rapamycin: master regulator of cell growth in the nervous system. Histol Histopathol. 2007;22(8):895-903.
  • Graham KF, Haddick PC, Jan YN, Jan LY. Activity- and mTOR-dependent suppression of Kv1.1 channel mRNA translation in dendrites. Science. 2006;314(5796):144-8.
  • Lenz G, Avruch J. Glutamatergic regulation of the p70S6 kinase in primary mouse neurons. J Biol Chem. 2005;280(46):38121-4.
  • Gong R, Park CS, Abbassi NR, Tang SJ. Roles of gluta- mate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent den- dritic protein synthesis in hippocampal neurons. J Biol Chem. 2006;281(27):18802-15.
  • Brewster AL, Lugo JN, Patil VV, Lee WL, Qian Y, Vanegas F, et al. Rapamycin reverses status epilepticus- induced memory deficits and dendritic damage. PLoS One. 2013;8(3):e57808.