On the numerical investigations to the Cahn-Allen equation by using finite difference method

On the numerical investigations to the Cahn-Allen equation by using finite difference method

In this study, by using the finite difference method (FDM for short) and operators,the discretized Cahn-Allen equation is obtained. New initial condition for theCahn-Allen equation is introduced, considering the analytical solution given inApplication of the modified exponential function method to the Cahn-Allenequation, AIP Conference Proceedings 1798, 020033 [1]. It is shown that theFDM is stable for the usage of the Fourier-Von Neumann technique. Accuracy ofthe method is analyzed in terms of the errors in L 2 and L  . Furthermore, the FDMis treated in order to obtain the numerical results and to construct a table includingnumerical and exact solutions as well as absolute measuring error. A comparisonbetween the numerical and the exact solutions is supported with two and threedimensional graphics via Wolfram Mathematica 11.

___

  • Bulut, H. (2017). Application of the modified exponential function method to the Cahn-Allen equation, AIP Conference Proceedings 1798, 020033.
  • Villarreal, J. M. (2014). Approximate solutions to the allen-cahn equation using the finite difference method, Thesis, B.S., Texas A & M International University.
  • Xue, C. X., Pan, E. & Zhang, S. Y. (2011). Solitary waves in a magneto-electro-elastic circular rod, Smart Materials and Structures, 20(105010), 1-7.
  • Russell, J. S. (1844). Report on waves, 14th Mtg of the British Association for the Advancement of Science.
  • Yang, Y. J. (2013). New application of the ( G  / G ,1 / G ) -expansion method to KP equation, Applied Mathematical Sciences, 7(20), 959-967.
  • Yokus, A. (2011). Solutions of some nonlinear partial differential equations and comparison of their solutions, Ph.D. Thesis, Firat University.
  • Guo, S. & Zhou, Y. (2011). The extended ( G  / G ) -expansion method and its applications to the Whitham-Broer-Like equations and coupled Hirota- Satsuma KdV equations, Applied Mathematics and Computation, 215 (9) 3214-3221.
  • Yokus, A. (2017). Numerical solution for space and time fractional order Burger type equation, Alexandria Engineering Journal, https://doi.org/10.1016/j.aej.2017.05.028.
  • Yokus, A. & Kaya, D. (2015). Conservation laws and a new expansion method for sixth order Boussinesq equation, AIP Conference Proceedings 1676, 020062.
  • Jawad, A. J. M., Petkovic, M. D. & Biswas, A. (2010). Modified simple equation method for nonlinear evolution equations, Applied Mathematics and Computation, 217, 869-877.
  • Su, L., Wang, W. & Yang, Z. (2009). Finite difference approximations for the fractional advection–diffusion equation, Physics Letters A 373, 4405–4408.
  • Odibat, Z. M. & Shawagfeh, N. T. (2007). Generalized Taylor’s formula. Applied Mathematics and Computation, 186 286-293.2.
  • Liu, F., Zhuang, P., Anh, V., Turner, I. & Burrage K. (2007). Stability and convergence of the difference methods for the space-time fractional advection– diffusion equation, Applied Mathematics and Computation 191, 2–20.
  • Su, L., Wang, W. & Yang, Z. (2009). Finite difference approximations for the fractional advection–diffusion equation, Physics Letters A, 373, 4405–4408.
  • Miura, M. R. (1978). Backlund transformation, Springer, Berlin.
  • Motsa, S. S., Sibanda, P., Awad, F.G. & Shateyi, S. (2010). A new spectral-homotopy analysis method for the MHD Jeffery-Hamel problem, Computers & Fluids, 39(7), 1219-1225.
  • Domairry, G., Mohsenzadeh, A. & Famouri, M. (2009). The application of homotopy analysis method to solve nonlinear differential equation governing Jeffery-Hamel flow, Communications in Nonlinear Science and Numerical Simulation, 14(1), 85-95.
  • Joneidi, A.A., Domairry, G. & Babaelahi, M. (2010). Three analytical methods applied to Jeffery-Hamel flow, Communications in Nonlinear Science and Numerical Simulation, 15(11), 3423–3434.
  • Alam, M. N., Hafez, M. G., Akbar, M. A. & Roshid, H. O. (2015). Exact Solutions to the (2+1)- Dimensional Boussinesq Equation via exp (Φ(η))- Expansion Method, Journal of Scientific Research, 7(3), 1-10.
  • Roshid, H. O. & Rahman, Md. A. (2014). The exp (−Φ(η))-expansion method with application in the (1+1)-dimensional classical Boussinesq equations, Results in Physics, 4, 150–155.
  • Abdelrahman, M. A. E., Zahran, E. H. M. & Khater, M. M. A. (2015). The exp(−φ(ξ))-Expansion Method and Its Application for Solving Nonlinear Evolution Equations, International Journal of Modern Nonlinear Theory and Application, 4, 37-47.
  • Baskonus, H. M., & Bulut, H. (2015). On the complex structures of Kundu-Eckhaus equation via improved Bernoulli sub-equation function method. Waves in Random and Complex Media, 25(4), 720- 728.
  • Bulut, H., Atas, S. S., & Baskonus, H. M. (2016). Some novel exponential function structures to the Cahn–Allen equation. Cogent Physics, 3(1), 1240886.
  • Wang, M., Li, X., & Zhang, J. (2008). The (G′ G)- expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Physics Letters A, 372(4), 417-423.
  • Feng, J., Li, W., & Wan, Q. (2011). Using G′ G- expansion method to seek the traveling wave solution of Kolmogorov–Petrovskii–Piskunov equation. Applied Mathematics and Computation, 217(12), 5860-5865.
  • Yokus, A., Baskonus, H. M., Sulaiman, T. A., & Bulut, H. (2018). Numerical simulation and solutions of the two‐component second order KdV evolutionarysystem. Numerical Methods for Partial Differential Equations, 34(1), 211-227.
  • Şener, S. Ş., Saraç, Y., & Subaşı, M. (2013). Weak solutions to hyperbolic problems with inhomogeneous Dirichlet and Neumann boundary conditions. Applied Mathematical Modelling, 37(5), 2623-2629.
  • Subaşı, M., Şener, S. Ş., & Saraç, Y. (2011). A procedure for the Galerkin method for a vibrating system. Computers & Mathematics with Applications, 61(9), 2854-2862.
  • Rezzolla, L. (2011). Numerical methods for the solution of partial differential equations. Lecture Notes for the COMPSTAR School on Computational Astrophysics, 8-13.
  • Yokus, A., & Kaya, D. (2017). Numerical and exact solutions for time fractional Burgers’ equation. Journal of Nonlinear Sciences and Applications, 10(7), 3419-3428.