Fractional Hermite-Hadamard type inequalities for functions whose derivatives are extended s-(α, m)-preinvex
Fractional Hermite-Hadamard type inequalities for functions whose derivatives are extended s-(α, m)-preinvex
In this paper, we introduce the class of extended s-(α, m)-preinvex functions.We establish a new fractional integral identity and derive some new fractionalHermite-Hadamard type inequalities for functions whose derivatives are in thisnovel class of function.
___
- Mitrinović, D.S., Pečarić, J.E. and Fink, A.M.
(1993). Classical and new inequalities in anal-
ysis. Mathematics and its Applications (East
European Series), 61. Kluwer Academic Pub-
lishers Group, Dordrecht.
- Khan, M.A., Khurshid, Y., Ali, T. and
Rehman, N. (2018). Inequalities for Hermite-
Hadamard type with applications, Punjab
Univ. J. Math. (Lahore), 50(3), 1–12.
- Chu, Y.M., Khan, M.A., Khan, T.U. and
Ali, T. (2016). Generalizations of Hermite-
Hadamard type inequalities for MT-convex
functions, J. Nonlinear Sci. Appl. 9(6), 4305–
4316.
- Set, E., Karataş, S.S. and Khan, M.A.
(2016). Hermite-Hadamard type inequalities
obtained via fractional integral for differen-
tiable m-convex and (α, m)-convex functions,
Int. J. Anal. 2016, Art. ID 4765691, 8 pp.
- Chu, Y.M., Khan, M.A., Ali, T. and
Dragomir, S.S. (2017). Inequalities for α-
fractional differentiable functions, J. Inequal.
Appl. 2017, Paper No. 93, 12 pp.
- Khan, M.A., Ali, T. and Dragomir, S.S.
(2018). Hermite–Hadamard type inequalities
for conformable fractional integrals, Rev. R.
Acad. Cienc. Exactas Fı́s. Nat. Ser. A Math.
RACSAM, 112(4), 1033–1048.
- Khan, M.A., Khurshid, Y. and Ali, T. (2017).
Hermite-Hadamard inequality for fractional
integrals via η-convex functions, Acta Math.
Univ. Comenian. (N.S.), 86(1), 153–164.
- Khan, M.A., Chu, Y.M., Khan, T.U. and
Khan, J. (2017). Some new inequalities of
Hermite-Hadamard type for s-convex func-
tions with applications, Open Math., 15,
1414–1430.
- Khan, M.A., Khurshid, Y., Ali, T. and
Rehman, N. (2016). Inequalities for three
times differentiable functions, Punjab Univ.
J. Math. (Lahore), 46(2), 35–48.
- Kirmaci, U.S. and Özdemir, M.E. (2004).
Some inequalities for mappings whose deriva-
tives are bounded and applications to special
means of real numbers. Appl. Math. Lett.,
17(6), 641–645.
- Sarikaya, M.Z., Set, E., Yaldiz, H. and
Başak, N. (2013). Hermite–Hadamard’s in-
equalities for fractional integrals and re-
lated fractional inequalities. Mathematical
and Computer Modelling. 57(9), 2403-2407.
- Zhu, C., Fečkan, M. and Wang, J. (2012).
Fractional integral inequalities for differen-
tiable convex mappings and applications to
special means and a midpoint formula. J.
Appl. Math. Stat. Inf. 8(2), 21-28.
- Pečarić, J.E., Proschan, F. and Tong, Y.L.
(1992). Convex functions, partial orderings,
and statistical applications. Mathematics in
Science and Engineering. 187. Academic
Press, Inc., Boston, MA.
- Dragomir, S.S., Pečarić, J.E. and Persson,
L.E. (1995). Some inequalities of Hadamard
type. Soochow J. Math. 21(3), 335–341.
- Godunova, E.K. and Levin, V.I. (1985).
Inequalities for functions of a broad class
that contains convex, monotone and some
other forms of functions. (Russian) Numerical
mathematics and mathematical physics (Rus-
sian), 138–142, 166, Moskov. Gos. Ped. Inst.,
Moscow.
- Dragomir, S.S. (2015). Inequalities of
Hermite-Hadamard type for h-convex func-
tions on linear spaces. Proyecciones 34(4),
323–341.
- Noor, M.A., Noor, K.I., Awan, M.U.
and Khan, S. (2014). Fractional Hermite-
Hadamard inequalities for some new classes of
Godunova-Levin functions. Appl. Math. Inf.
Sci., 8(6), 2865–2872.
- Orlicz, W. (1961). A note on modular spaces.
I. Bull. Acad. Polon. Sci. Math. Astronom.
Phys. 9, 157–162.
- Breckner, W.W. (1978). Stetigkeitsaus-
sagen für eine Klasse verallgemeinerter
konvexer Funktionen in topologischen lin-
earen Räumen. (German) Publ. Inst. Math.
(Beograd) (N.S.) 23(37), 13–20.
- Xi, B-Y. and Qi, F. (2015). Inequalities
of Hermite-Hadamard type for extended s-
convex functions and applications to means.
J. Nonlinear Convex Anal. 16(5), 873–890.
- Toader, G. (1985). Some generalizations of
the convexity. Proceedings of the colloquium
on approximation and optimization (Cluj-
Napoca, 1985), 329–338, Univ. Cluj-Napoca,
Cluj-Napoca.
- Mihesan, V.G. (1993). A generalization of the
convexity, Seminar on Functional Equations,
Approx. Convex, Cluj-Napoca, Vol. 1., Ro-
mania.
- Eftekhari, N. (2014). Some remarks on
(s, m)-convexity in the second sense. J. Math.
Inequal. 8(3), 489–495.
- Noor, M.A., Noor, K.I. and Awan, M.U.
(2015). Fractional Ostrowski inequalities
for (s, m)-Godunova-Levin functions. Facta
Univ. Ser. Math. Inform. 30(4), 489–499.
- Muddassar, M., Bhatti, M.I. and Irshad, W.
(2013). Generalisations of integral inequalities
of Hermite-Hadamard type through convex-
ity. Bull. Aust. Math. Soc. 88(2), 320–330.
- Weir, T. and Mond, B. (1988). Pre-invex
functions in multiple objective optimization.
J. Math. Anal. Appl., 136(1), 29–38.
- Noor, M.A., Noor, K.I., Awan, M.U. and
Li, J. (2014) On Hermite-Hadamard inequal-
ities for h-preinvex functions. Filomat, 28(7),
1463-1474.
- Noor, M.A., Noor, K.I., Awan, M.U. and
Khan, S. (2014). Hermite-Hadamard inequali-
ties for s-Godunova-Levin preinvex functions.
J. Adv. Math. Stud., 7(2), 12-19.
- Wang, Y., Zheng, M-M. and Qi, F. (2014).In-
tegral inequalities of Hermite-Hadamard type
for functions whose derivatives are α-
preinvex. J. Inequal. Appl. 2014, 2014:97, 10
pp.
- Li, J-H. (2010). On Hadamard-type inequal-
ities for s-preinvex functions. Journal of
Chongqing Normal University (Natural Sci-
ence), 27(4), p. 003.
- Latif, M.A. and Shoaib, M. (2015). Hermite-
Hadamard type integral inequalities for dif-
ferentiable m-preinvex and (α, m)-preinvex
functions. J. Egyptian Math. Soc., 23(2), 236–
241.
- Meftah, B. (2016). Hermite-Hadamard’s in-
equalities for functions whose first derivatives
are (s, m)-preinvex in the second sense. JNT,
10, 54–65.
- Deng, J. and Wang, J. (2013). Fractional
Hermite-Hadamard inequalities for (α, m)-
logarithmically convex functions. J. Inequal.
Appl., 2013:364, 11 pp.
- Park, J. (2015). Hermite-Hadamard-like type
inequalities for s-convex function and s-
Godunova-Levin functions of two kinds. Int.
Math. Forum, 9, 3431-3447.