Fractional Hermite-Hadamard type inequalities for functions whose derivatives are extended s-(α, m)-preinvex

Fractional Hermite-Hadamard type inequalities for functions whose derivatives are extended s-(α, m)-preinvex

In this paper, we introduce the class of extended s-(α, m)-preinvex functions.We establish a new fractional integral identity and derive some new fractionalHermite-Hadamard type inequalities for functions whose derivatives are in thisnovel class of function.

___

  • Mitrinović, D.S., Pečarić, J.E. and Fink, A.M. (1993). Classical and new inequalities in anal- ysis. Mathematics and its Applications (East European Series), 61. Kluwer Academic Pub- lishers Group, Dordrecht.
  • Khan, M.A., Khurshid, Y., Ali, T. and Rehman, N. (2018). Inequalities for Hermite- Hadamard type with applications, Punjab Univ. J. Math. (Lahore), 50(3), 1–12.
  • Chu, Y.M., Khan, M.A., Khan, T.U. and Ali, T. (2016). Generalizations of Hermite- Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl. 9(6), 4305– 4316.
  • Set, E., Karataş, S.S. and Khan, M.A. (2016). Hermite-Hadamard type inequalities obtained via fractional integral for differen- tiable m-convex and (α, m)-convex functions, Int. J. Anal. 2016, Art. ID 4765691, 8 pp.
  • Chu, Y.M., Khan, M.A., Ali, T. and Dragomir, S.S. (2017). Inequalities for α- fractional differentiable functions, J. Inequal. Appl. 2017, Paper No. 93, 12 pp.
  • Khan, M.A., Ali, T. and Dragomir, S.S. (2018). Hermite–Hadamard type inequalities for conformable fractional integrals, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Math. RACSAM, 112(4), 1033–1048.
  • Khan, M.A., Khurshid, Y. and Ali, T. (2017). Hermite-Hadamard inequality for fractional integrals via η-convex functions, Acta Math. Univ. Comenian. (N.S.), 86(1), 153–164.
  • Khan, M.A., Chu, Y.M., Khan, T.U. and Khan, J. (2017). Some new inequalities of Hermite-Hadamard type for s-convex func- tions with applications, Open Math., 15, 1414–1430.
  • Khan, M.A., Khurshid, Y., Ali, T. and Rehman, N. (2016). Inequalities for three times differentiable functions, Punjab Univ. J. Math. (Lahore), 46(2), 35–48.
  • Kirmaci, U.S. and Özdemir, M.E. (2004). Some inequalities for mappings whose deriva- tives are bounded and applications to special means of real numbers. Appl. Math. Lett., 17(6), 641–645.
  • Sarikaya, M.Z., Set, E., Yaldiz, H. and Başak, N. (2013). Hermite–Hadamard’s in- equalities for fractional integrals and re- lated fractional inequalities. Mathematical and Computer Modelling. 57(9), 2403-2407.
  • Zhu, C., Fečkan, M. and Wang, J. (2012). Fractional integral inequalities for differen- tiable convex mappings and applications to special means and a midpoint formula. J. Appl. Math. Stat. Inf. 8(2), 21-28.
  • Pečarić, J.E., Proschan, F. and Tong, Y.L. (1992). Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering. 187. Academic Press, Inc., Boston, MA.
  • Dragomir, S.S., Pečarić, J.E. and Persson, L.E. (1995). Some inequalities of Hadamard type. Soochow J. Math. 21(3), 335–341.
  • Godunova, E.K. and Levin, V.I. (1985). Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. (Russian) Numerical mathematics and mathematical physics (Rus- sian), 138–142, 166, Moskov. Gos. Ped. Inst., Moscow.
  • Dragomir, S.S. (2015). Inequalities of Hermite-Hadamard type for h-convex func- tions on linear spaces. Proyecciones 34(4), 323–341.
  • Noor, M.A., Noor, K.I., Awan, M.U. and Khan, S. (2014). Fractional Hermite- Hadamard inequalities for some new classes of Godunova-Levin functions. Appl. Math. Inf. Sci., 8(6), 2865–2872.
  • Orlicz, W. (1961). A note on modular spaces. I. Bull. Acad. Polon. Sci. Math. Astronom. Phys. 9, 157–162.
  • Breckner, W.W. (1978). Stetigkeitsaus- sagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen lin- earen Räumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37), 13–20.
  • Xi, B-Y. and Qi, F. (2015). Inequalities of Hermite-Hadamard type for extended s- convex functions and applications to means. J. Nonlinear Convex Anal. 16(5), 873–890.
  • Toader, G. (1985). Some generalizations of the convexity. Proceedings of the colloquium on approximation and optimization (Cluj- Napoca, 1985), 329–338, Univ. Cluj-Napoca, Cluj-Napoca.
  • Mihesan, V.G. (1993). A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, Vol. 1., Ro- mania.
  • Eftekhari, N. (2014). Some remarks on (s, m)-convexity in the second sense. J. Math. Inequal. 8(3), 489–495.
  • Noor, M.A., Noor, K.I. and Awan, M.U. (2015). Fractional Ostrowski inequalities for (s, m)-Godunova-Levin functions. Facta Univ. Ser. Math. Inform. 30(4), 489–499.
  • Muddassar, M., Bhatti, M.I. and Irshad, W. (2013). Generalisations of integral inequalities of Hermite-Hadamard type through convex- ity. Bull. Aust. Math. Soc. 88(2), 320–330.
  • Weir, T. and Mond, B. (1988). Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl., 136(1), 29–38.
  • Noor, M.A., Noor, K.I., Awan, M.U. and Li, J. (2014) On Hermite-Hadamard inequal- ities for h-preinvex functions. Filomat, 28(7), 1463-1474.
  • Noor, M.A., Noor, K.I., Awan, M.U. and Khan, S. (2014). Hermite-Hadamard inequali- ties for s-Godunova-Levin preinvex functions. J. Adv. Math. Stud., 7(2), 12-19.
  • Wang, Y., Zheng, M-M. and Qi, F. (2014).In- tegral inequalities of Hermite-Hadamard type for functions whose derivatives are α- preinvex. J. Inequal. Appl. 2014, 2014:97, 10 pp.
  • Li, J-H. (2010). On Hadamard-type inequal- ities for s-preinvex functions. Journal of Chongqing Normal University (Natural Sci- ence), 27(4), p. 003.
  • Latif, M.A. and Shoaib, M. (2015). Hermite- Hadamard type integral inequalities for dif- ferentiable m-preinvex and (α, m)-preinvex functions. J. Egyptian Math. Soc., 23(2), 236– 241.
  • Meftah, B. (2016). Hermite-Hadamard’s in- equalities for functions whose first derivatives are (s, m)-preinvex in the second sense. JNT, 10, 54–65.
  • Deng, J. and Wang, J. (2013). Fractional Hermite-Hadamard inequalities for (α, m)- logarithmically convex functions. J. Inequal. Appl., 2013:364, 11 pp.
  • Park, J. (2015). Hermite-Hadamard-like type inequalities for s-convex function and s- Godunova-Levin functions of two kinds. Int. Math. Forum, 9, 3431-3447.