On stable high order difference schemes for hyperbolic problems with the Neumann boundary conditions
On stable high order difference schemes for hyperbolic problems with the Neumann boundary conditions
In this paper, third and fourth order of accuracy stable difference schemesfor approximately solving multipoint nonlocal boundary value problems forhyperbolic equations with the Neumann boundary conditions are considered.Stability estimates for the solutions of these difference schemes are presented.Finite difference method is used to obtain numerical solutions. Numericalresults of errors and CPU times are presented and are analyzed.
___
- Day, W. A. (1983). A decreasing property
of solutions of parabolic equations with ap-
plications to Thermoelasticity. Quart. Appl.
Math., 40, 468-475.
- Gurevich, P., Jager, W., Skubachevskii,
A. (2009). On periodicity of solutions for
thermocontrol problems with hysteresis-type
switches. SIAM J. Math. Anal., 41, 733-752.
- Grigorescu, I., Kang, M. (2001). Brown-
ian motion on the figure eight. J. Theoret.
Probab., 15, 817-844.
- Ozdemir, N., Avci, D., Iskender, B. B. (2011).
Numerical Solutions of Two-Dimensional
Space-Time Riesz-Caputo Fractional Diffu-
sion Equation. IJOCTA, 1, 17-26.
- Ozdemir, N., Agrawal, O. P., Karadeniz,
D., Iskender, B. B. (2009). Fractional opti-
mal control problem of An axis-symmetric diffusion-wave propagation. Phys. Scr. T.,
136, 014024, 5 pp.
- Gustafson, B., Kreiss, H. O., Oliger, J.
(1995). Time dependent problems and differ-
ence methods. Wiley, New York.
- Ashyralyev, A., Sobolevskii, P. E. (2004).
New difference shemes for partial differen-
tial equations, operator theory: advances
and applications. Birkhäuser., vol 148, Basel,
Boston, Berlin.
- Sobolevskii, P. C., Chebotaryeva, L. M.
(1977). Approximate solution by method of
lines of the Cauchy problem for an abstract
hyperbolic equations. Izv. Vyssh. Uchebn.
Zav. Matematika, 5, 103-116.
- Belakroum, Kh, Ashyralyev, A., Guezane-
Lakoud, A. (2018). A Note on the Nonlocal
Boundary Value Problem for a Third Order
Partial Differential Equation. Filomat, 32(3),
801081, 89-98.
- Ashyralyev, A., Agirseven, D. (2018).
Bounded solutions of nonlinear hyperbolic
equations with time delay. Electronic Journal
of Differential Equations, 21, 1-15.
- Ashyralyev, A., Akturk, S. (2017). A note on
positivity of two-dimensional differential op-
erators. Filomat, 31(14), 4651663.
- Ashyralyev, A., Beigmohammadi, E.O.
(2017). Well-posedness of a fourth order
of accuracy difference scheme for Bitsadze-
Samarskii-type problem. Numerical Func-
tional Analysis and Optimization, 38(10),
1244-1259.
- Lax, P. D., Wendroff, B. (1964). Differ-
ence schemes for hyperbolic equations with
high order of accuracy. Commun. Pure Appl.
Math., 17, 381-398.
- Fattorini, H. O. (1985). Second order lin-
ear differential equations in Banach spaces.
North-Holland Mathematics Studies, vol. 108,
North-Holland, Amsterdam, Netherlands.
- Krein, S. G. (1966). Linear differential equa-
tions in a Banach space. Nauka, Moscow.
- Sobolevskii, P. E. (1975). Difference meth-
ods for the approximate solution of differen-
tial equations. Izdat. Gosud. Univ, Voronezh.
- Ashyralyev, A., Sobolevskii, P. E. (2005).
Two new approaches for construction of the
high order of accuracy difference schemes
for hyperbolic differential equations. Discrete
Dyn. Nat. Soc., 2, 183-213.
- Yildirim, O., Uzun, M. (2015). On the nu-
merical solutions of high order stable differ-
ence schemes for the hyperbolic multipoint
nonlocal boundary value problems. Applied
Mathematics and Computation, 254, 210-218.
- Yildirim, O., Uzun, M. (2015). On third or-
der stable difference scheme for hyperbolic
multipoint nonlocal boundary value problem.
Discrete Dyn. Nat. Soc., 2015, 16 pages.
- Yildirim O., Uzun M. (2017). On fourth order
stable difference scheme for hyperbolic multi-
point NBVP. Numerical Functional Analysis
and Optimization, 38(10), 1305-1324.
- Ashyralyyev, C. (2014). High order ap-
proximation of the inverse elliptic problem
with Dirichlet-Neumann Conditions. Filomat,
28(5), 94762.
- Ashyralyyev, C. (2014). High order of accu-
racy difference schemes for the inverse ellip-
tic problem with Dirichlet condition. Bound.
Value Probl., 2014:5, 13.
- Ashyralyev, A., Sobolevskii, P. E. (2001). A
note on the difference schemes for hyperbolic
equations. Abstr. Appl. Anal., 6, 63-70.
- Ashyralyev, A., Yildirim, O. (2010). On mul-
tipoint nonlocal boundary value problems for hyperbolic differential and difference equa-
tions. Taiwanese J. Math., 14, 165-194.
- Direk, Z., Ashyraliyev, M. (2014). FDM for
the integral-differential equation of the hyper-
bolic type. Adv. Differ. Equations, 2014, 1-8.
- Piskarev, S., Shaw, Y. (1997). On certain op-
erator families related to cosine operator func-
tion. Taiwanese J. Math., 1, 3585-3592.
- Yildirim, O., Uzun, M. (2016). On stability of
difference schemes for hyperbolic multipoint
NBVP with Neumann conditions. AIP Conf.
Proc., 1759, Almaty, Kazakhstan.