On stable high order difference schemes for hyperbolic problems with the Neumann boundary conditions

On stable high order difference schemes for hyperbolic problems with the Neumann boundary conditions

In this paper, third and fourth order of accuracy stable difference schemesfor approximately solving multipoint nonlocal boundary value problems forhyperbolic equations with the Neumann boundary conditions are considered.Stability estimates for the solutions of these difference schemes are presented.Finite difference method is used to obtain numerical solutions. Numericalresults of errors and CPU times are presented and are analyzed.

___

  • Day, W. A. (1983). A decreasing property of solutions of parabolic equations with ap- plications to Thermoelasticity. Quart. Appl. Math., 40, 468-475.
  • Gurevich, P., Jager, W., Skubachevskii, A. (2009). On periodicity of solutions for thermocontrol problems with hysteresis-type switches. SIAM J. Math. Anal., 41, 733-752.
  • Grigorescu, I., Kang, M. (2001). Brown- ian motion on the figure eight. J. Theoret. Probab., 15, 817-844.
  • Ozdemir, N., Avci, D., Iskender, B. B. (2011). Numerical Solutions of Two-Dimensional Space-Time Riesz-Caputo Fractional Diffu- sion Equation. IJOCTA, 1, 17-26.
  • Ozdemir, N., Agrawal, O. P., Karadeniz, D., Iskender, B. B. (2009). Fractional opti- mal control problem of An axis-symmetric diffusion-wave propagation. Phys. Scr. T., 136, 014024, 5 pp.
  • Gustafson, B., Kreiss, H. O., Oliger, J. (1995). Time dependent problems and differ- ence methods. Wiley, New York.
  • Ashyralyev, A., Sobolevskii, P. E. (2004). New difference shemes for partial differen- tial equations, operator theory: advances and applications. Birkhäuser., vol 148, Basel, Boston, Berlin.
  • Sobolevskii, P. C., Chebotaryeva, L. M. (1977). Approximate solution by method of lines of the Cauchy problem for an abstract hyperbolic equations. Izv. Vyssh. Uchebn. Zav. Matematika, 5, 103-116.
  • Belakroum, Kh, Ashyralyev, A., Guezane- Lakoud, A. (2018). A Note on the Nonlocal Boundary Value Problem for a Third Order Partial Differential Equation. Filomat, 32(3), 801081, 89-98.
  • Ashyralyev, A., Agirseven, D. (2018). Bounded solutions of nonlinear hyperbolic equations with time delay. Electronic Journal of Differential Equations, 21, 1-15.
  • Ashyralyev, A., Akturk, S. (2017). A note on positivity of two-dimensional differential op- erators. Filomat, 31(14), 4651663.
  • Ashyralyev, A., Beigmohammadi, E.O. (2017). Well-posedness of a fourth order of accuracy difference scheme for Bitsadze- Samarskii-type problem. Numerical Func- tional Analysis and Optimization, 38(10), 1244-1259.
  • Lax, P. D., Wendroff, B. (1964). Differ- ence schemes for hyperbolic equations with high order of accuracy. Commun. Pure Appl. Math., 17, 381-398.
  • Fattorini, H. O. (1985). Second order lin- ear differential equations in Banach spaces. North-Holland Mathematics Studies, vol. 108, North-Holland, Amsterdam, Netherlands.
  • Krein, S. G. (1966). Linear differential equa- tions in a Banach space. Nauka, Moscow.
  • Sobolevskii, P. E. (1975). Difference meth- ods for the approximate solution of differen- tial equations. Izdat. Gosud. Univ, Voronezh.
  • Ashyralyev, A., Sobolevskii, P. E. (2005). Two new approaches for construction of the high order of accuracy difference schemes for hyperbolic differential equations. Discrete Dyn. Nat. Soc., 2, 183-213.
  • Yildirim, O., Uzun, M. (2015). On the nu- merical solutions of high order stable differ- ence schemes for the hyperbolic multipoint nonlocal boundary value problems. Applied Mathematics and Computation, 254, 210-218.
  • Yildirim, O., Uzun, M. (2015). On third or- der stable difference scheme for hyperbolic multipoint nonlocal boundary value problem. Discrete Dyn. Nat. Soc., 2015, 16 pages.
  • Yildirim O., Uzun M. (2017). On fourth order stable difference scheme for hyperbolic multi- point NBVP. Numerical Functional Analysis and Optimization, 38(10), 1305-1324.
  • Ashyralyyev, C. (2014). High order ap- proximation of the inverse elliptic problem with Dirichlet-Neumann Conditions. Filomat, 28(5), 94762.
  • Ashyralyyev, C. (2014). High order of accu- racy difference schemes for the inverse ellip- tic problem with Dirichlet condition. Bound. Value Probl., 2014:5, 13.
  • Ashyralyev, A., Sobolevskii, P. E. (2001). A note on the difference schemes for hyperbolic equations. Abstr. Appl. Anal., 6, 63-70.
  • Ashyralyev, A., Yildirim, O. (2010). On mul- tipoint nonlocal boundary value problems for hyperbolic differential and difference equa- tions. Taiwanese J. Math., 14, 165-194.
  • Direk, Z., Ashyraliyev, M. (2014). FDM for the integral-differential equation of the hyper- bolic type. Adv. Differ. Equations, 2014, 1-8.
  • Piskarev, S., Shaw, Y. (1997). On certain op- erator families related to cosine operator func- tion. Taiwanese J. Math., 1, 3585-3592.
  • Yildirim, O., Uzun, M. (2016). On stability of difference schemes for hyperbolic multipoint NBVP with Neumann conditions. AIP Conf. Proc., 1759, Almaty, Kazakhstan.