Hermite-Hadamard’s inequalities for conformable fractional integrals

Hermite-Hadamard’s inequalities for conformable fractional integrals

In this paper, we establish the Hermite-Hadamard type inequalities for con-formable fractional integral and we will investigate some integral inequalitiesconnected with the left and right-hand side of the Hermite-Hadamard typeinequalities for conformable fractional integral. The results presented herewould provide generalizations of those given in earlier works and we show thatsome of our results are better than the other results with respect to midpointinequalities.

___

  • Beckenbach, E. F. (1948). Convex func- tions. Bull. Amer. Math. Soc., 54 439-460. http://dx.doi.org/10.1090/s0002-9904-1948- 08994-7.
  • Hermite, C. (1883). Sur deux limites d’une integrale definie. Mathesis, 3, 82.
  • Farissi, A.E. (2010). Simple proof and re- finement of Hermite-Hadamard inequality. J. Math.Inequal., 4(3), 365-369.
  • Sarikaya, M.Z., Set, E., Yaldız, H. and Başak, N. (2013). Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Modell., 57 (9), 2403–2407.
  • Sarikaya, M.Z. and Aktan, N. (2011). On the generalization of some integral inequali- ties and their applications, Mathematical and Computer Modelling, 54(9–10), 2175–2182.
  • Kırmacı, U.S. (2004). Inequalities for differ- entiable mappings and applications to special means of real numbers and to midpoint for- mula. Appl. Math. Comput., 147 (1), 137– 146.
  • Dragomir, S.S. and Agarwal, R.P. (1998). Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Applied Mathematics Letters, 11(5), 91-95.
  • Mitrinovic, D.S. (1970). Analytic inequalities. Springer, Berlin-Heidelberg-New York.
  • Abdeljawad, T. (2015). On conformable frac- tional calculus. Journal of Computational and Applied Mathematics, 279, 57–66.
  • Anderson D.R. (2016). Taylors formula and integral inequalities for conformable frac- tional derivatives. In: Pardalos, P., Ras- sias, T. (eds) Contributions in Mathemat- ics and Engineering. Springer, Cham, 25- 43 https://doi.org/10.1007/978-3-319-31317- 7-2.
  • Khalil, R., Al horani, M., Yousef, A. and Sababheh, M. (2014). A new definition of frac- tional derivative. Journal of Computational Applied Mathematics, 264, 65-70.
  • Iyiola, O.S. and Nwaeze, E.R. (2016). Some new results on the new conformable fractional calculus with application using D’Alambert approach. Progr. Fract. Differ. Appl., 2(2), 115-122.
  • Abu Hammad, M. and Khalil, R. (2014). Conformable fractional heat differential equa- tions. International Journal of Differential Equations and Applications, 13( 3), 177-183.
  • Abu Hammad, M. and Khalil, R. (2014). Abel’s formula and wronskian for con- formable fractional differential equations. In- ternational Journal of Differential Equations and Applications, 13(3), 177-183.
  • Akkurt, A., Yıldırım, M.E. and Yıldırım, H. (2017). On some integral inequalities for con- formable fractional integrals. Asian Journal of Mathematics and Computer Research, 15(3), 205-212.
  • Akkurt, A., Yıldırım, M.E. and Yıldırım, H.(2017). A new generalized fractional deriv- ative and integral. Konuralp Journal of Math- ematics, 5(2), 248–259.
  • Budak, H., Usta, F., Sarikaya, M.Z. and Ozdemir, M.E. (2018). On generalization of midpoint type inequalities with gener- alized fractional integral operators. Revista de la Real Academia de Ciencias Exactas, Fsicas y Naturales. Serie A. Matemticas, https://doi.org/10.1007/s13398-018-0514-z
  • Usta, F., Budak, H., Sarikaya, M.Z. and Set, E. (2018). On generalization of trapezoid type inequalities for s-convex functions with gener- alized fractional integral operators. Filomat, 32(6).