Hermite-Hadamard’s inequalities for conformable fractional integrals
Hermite-Hadamard’s inequalities for conformable fractional integrals
In this paper, we establish the Hermite-Hadamard type inequalities for con-formable fractional integral and we will investigate some integral inequalitiesconnected with the left and right-hand side of the Hermite-Hadamard typeinequalities for conformable fractional integral. The results presented herewould provide generalizations of those given in earlier works and we show thatsome of our results are better than the other results with respect to midpointinequalities.
___
- Beckenbach, E. F. (1948). Convex func-
tions. Bull. Amer. Math. Soc., 54 439-460.
http://dx.doi.org/10.1090/s0002-9904-1948-
08994-7.
- Hermite, C. (1883). Sur deux limites d’une
integrale definie. Mathesis, 3, 82.
- Farissi, A.E. (2010). Simple proof and re-
finement of Hermite-Hadamard inequality. J.
Math.Inequal., 4(3), 365-369.
- Sarikaya, M.Z., Set, E., Yaldız, H. and Başak,
N. (2013). Hermite–Hadamard’s inequalities
for fractional integrals and related fractional
inequalities. Math. Comput. Modell., 57 (9),
2403–2407.
- Sarikaya, M.Z. and Aktan, N. (2011). On
the generalization of some integral inequali-
ties and their applications, Mathematical and
Computer Modelling, 54(9–10), 2175–2182.
- Kırmacı, U.S. (2004). Inequalities for differ-
entiable mappings and applications to special
means of real numbers and to midpoint for-
mula. Appl. Math. Comput., 147 (1), 137–
146.
- Dragomir, S.S. and Agarwal, R.P. (1998).
Two inequalities for differentiable mappings
and applications to special means of real
numbers and to trapezoidal formula. Applied
Mathematics Letters, 11(5), 91-95.
- Mitrinovic, D.S. (1970). Analytic inequalities.
Springer, Berlin-Heidelberg-New York.
- Abdeljawad, T. (2015). On conformable frac-
tional calculus. Journal of Computational and
Applied Mathematics, 279, 57–66.
- Anderson D.R. (2016). Taylors formula and
integral inequalities for conformable frac-
tional derivatives. In: Pardalos, P., Ras-
sias, T. (eds) Contributions in Mathemat-
ics and Engineering. Springer, Cham, 25-
43 https://doi.org/10.1007/978-3-319-31317-
7-2.
- Khalil, R., Al horani, M., Yousef, A. and
Sababheh, M. (2014). A new definition of frac-
tional derivative. Journal of Computational
Applied Mathematics, 264, 65-70.
- Iyiola, O.S. and Nwaeze, E.R. (2016). Some
new results on the new conformable fractional
calculus with application using D’Alambert
approach. Progr. Fract. Differ. Appl., 2(2),
115-122.
- Abu Hammad, M. and Khalil, R. (2014).
Conformable fractional heat differential equa-
tions. International Journal of Differential
Equations and Applications, 13( 3), 177-183.
- Abu Hammad, M. and Khalil, R. (2014).
Abel’s formula and wronskian for con-
formable fractional differential equations. In-
ternational Journal of Differential Equations
and Applications, 13(3), 177-183.
- Akkurt, A., Yıldırım, M.E. and Yıldırım, H.
(2017). On some integral inequalities for con-
formable fractional integrals. Asian Journal of
Mathematics and Computer Research, 15(3),
205-212.
- Akkurt, A., Yıldırım, M.E. and Yıldırım,
H.(2017). A new generalized fractional deriv-
ative and integral. Konuralp Journal of Math-
ematics, 5(2), 248–259.
- Budak, H., Usta, F., Sarikaya, M.Z. and
Ozdemir, M.E. (2018). On generalization
of midpoint type inequalities with gener-
alized fractional integral operators. Revista
de la Real Academia de Ciencias Exactas,
Fsicas y Naturales. Serie A. Matemticas,
https://doi.org/10.1007/s13398-018-0514-z
- Usta, F., Budak, H., Sarikaya, M.Z. and Set,
E. (2018). On generalization of trapezoid type
inequalities for s-convex functions with gener-
alized fractional integral operators. Filomat,
32(6).