Novel approach for nonlinear time-fractional Sharma-Tasso-Olever equation using Elzaki transform

Novel approach for nonlinear time-fractional Sharma-Tasso-Olever equation using Elzaki transform

In this article, we demonstrated the study of the time-fractional nonlinear Sharma-Tasso-Olever (STO) equation with different initial conditions. The novel technique, which is the mixture of the q-homotopy analysis method and the new integral transform known as Elzaki transform called, q-homotopy analysis Elzaki transform method (q-HAETM) implemented to find the adequate approximated solution of the considered problems. The wave solutions of the STO equation play a vital role in the nonlinear wave model for coastal and harbor designs. The demonstration of the considered scheme is done by carrying out some examples of time-fractional STO equations with different initial approximations. q-HAETM offers us to modulate the range of convergence of the series solution using , called the auxiliary parameter or convergence control parameter. By performing appropriate numerical simulations, the effectiveness and reliability of the considered technique are validated. The implementation of the new integral transform called the Elzaki transform along with the reliable analytical technique called the q-homotopy analysis method to examine the time-fractional nonlinear STO equation displays the novelty of the presented work. The obtained findings show that the proposed method is very gratifying and examines the complex nonlinear challenges that arise in science and innovation.

___

  • [1] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J. (2006). Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies.
  • [2] Podlubny, I. (1999). Fractional Differential Equations. Academic Press, San Diego, CA.
  • [3] Xin, Z., Jing, Z., Wenru, L., Wenbo, X. (2021). Research on fractional sliding mode synchronous control of robotic arms under uncertain disturbance. Atomatic Control and Computer Sciences, 55(1), 26- 37.
  • [4] Wang, X., Petru, M., Xia, L., (2021). Modelling the dynamical behaviour of the flax fibre rainforced composite after water using a modified Huet-Sayegh viscoelastic model with fractional derivatives. Construction and Building Materials, 290, 122879.
  • [5] Ghamisi, P., Couceiro, J. A., Benediktsson, J. A., Ferreira, N. M. (2012). An efficient method for segementation of images based on fractional calculus and natural selection. Expert Systems with Applications, 39(16), 12407-12417.
  • [6] Rashid, S., Kubra, T., Ullah, S. (2021). Fractional spatial diffusion of a biological population model via a new integral transform in the setting of power and Mittag-Leffler nonsingular kernel. Physica Scripta, 96(11), 114003.
  • [7] Veeresha, P., Prakasha, D. G., Baskonus, H. M. (2019). New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives. Chaos, 29, 013119.
  • [8] El Mfadel, A., Melliani, S., & Elomari, M. H. (2021). A note on the stability analysis of fuzzy nonlinear fractional differential equations involving the Caputo fractional derivative. International Journal of Mathematics and Mathematical Sciences, 2021, 1-6.
  • [9] Veeresha, P., W, Gao., Prakasha, D. G., Malagi, N. S., Ilhan, E., Baskonus, H. M. (2021). New dynamical behaviour of the coronavirus (2019- nCoV) infection system with nonlocal operator from reservoirs to people. Information Sciences Letters, 10(2), 205-212.
  • [10] Hammouch, Z., Yavuz, M., & Özdemir, N. (2021). Numerical solutions and synchronization of a variable-order fractional chaotic system. Mathematical Modelling and Numerical Simulation with Applications, 1(1), 11-23.
  • [11] Sunitha, M., Fehmi, G., Amal, A., Malagi, N. S., Sandeep, S., Rekha, J. G., Punith Gowda R. J. (2023). An efficient analytical approach with novel integral transform to study the two-dimensional solute transport problem. Ain Shams Engineering Journal, 14(3), 101878.
  • [12] Logeswari, K., Ravichandran, C., & Nisar, K. S. (2020). Mathematical model for spreading of COVID 19 virus with the Mittag–Leffler kernel. Numerical Methods for Partial Differential Equations, 2020, 1-16.
  • [13] Yavuz, M., (2020). Europian option pricing models described by fractional operators with classical and generalized Mittag-Leffler kernels. Numerical Methods for Partial Differential Equations, 1-23.
  • [14] Özköse, F., & Yavuz, M. (2022). Investigation of interactions between COVID-19 and diabetes with hereditary traits using real data: A case study in Turkey. Computers in biology and medicine, 141, 105044.
  • [15] Veeresha, P., Yavuz, M., & Baishya, C. (2021). A computational approach for shallow water forced Korteweg–De Vries equation on critical flow over a hole with three fractional operators. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 11(3), 52-67.
  • [16] Chalishajar, D., Ravichandran, C., Dhanalakshmi, S., & Murugesu, R. (2019). Existence of fractional impulsive functional integro-differential equations in Banach spaces. Applied System Innovation, 2(2), 18.
  • [17] Jothimani, K., Kaliraj, K., Panda, S. K., Nisar, K. S., & Ravichandran, C. (2021). Results on controllability of non-densely characterized neutral fractional delay differential system. Evolution Equations & Control Theory, 10(3), 619.
  • [18] Nisar, K. S., Jothimani, K., Kaliraj, K., & Ravichandran, C. (2021). An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain. Chaos, Solitons & Fractals, 146, 110915.
  • [19] Prakasha, D. G., Malagi, N. S., & Veeresha, P. (2020). New approach for fractional Schrödinger Boussinesq equations with Mittag Leffler kernel. Mathematical Methods in the Applied Sciences, 43(17), 9654-9670.
  • [20] Prakasha, D. G., Malagi, N. S., Veeresha, P., & Prasannakumara, B. C. (2021). An efficient computational technique for time fractional Kaup Kupershmidt equation. Numerical Methods for Partial Differential Equations, 37(2), 1299-1316.
  • [21] Özköse, F., Yavuz, M., Şenel, M. T., & Habbireeh, R. (2022). Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom. Chaos, Solitons & Fractals, 157, 111954.
  • [22] Veeresha, P. (2021). A numerical approach to the coupled atmospheric ocean model using a fractional operator. Mathematical Modelling and Numerical Simulation with Applications, 1(1), 1-10.
  • [23] Yavuz, M., & Sene, N. (2020). Approximate solutions of the model describing fluid flow using generalized ρ-Laplace transform method and heat balance integral method. Axioms, 9(4), 123.
  • [24] Valliammal, N., & Ravichandran, C. (2018). Results on fractional neutral integro-differential systems with state-dependent delay in Banach spaces. Nonlinear Studies, 25(1), 159171.
  • [25] Evirgen, F., & Yavuz, M. (2018). An alternative approach for nonlinear optimization problem with Caputo-Fabrizio derivative. In ITM Web of Conferences (Vol. 22, p. 01009), EDP Sciences.
  • [26] Malagi, N. S., Veeresha, P., Prasannakumra, B. C., Prasanna, G, D., Prakasha, D. G. (2020). A new computational technique for the analytic treatment of time-fractional Emden-Fowler equations. Mathematics and Computers in Simulation, 190, 362-376.
  • [27] Evirgen, F., Uçar, S., Özdemir, N., & Hammouch, Z. (2021). System response of an alcoholism model under the effect of immigration via non-singular kernel derivative. Discrete & Continuous Dynamical Systems-S, 14(7), 2199.
  • [28] Wang, G. W., & Xu, T. Z. (2014). Invariant analysis and exact solutions of nonlinear time fractional Sharma–Tasso–Olver equation by Lie group analysis. Nonlinear Dynamics, 76(1), 571-580.
  • [29] Chen, A. (2010). Multi-kink solutions and soliton fission and fusion of Sharma–Tasso–Olver equation. Physics Letters A, 374(23), 2340-2345.
  • [30] Wang, G., Kara, A. H., & Fakhar, K. (2016). Nonlocal symmetry analysis and conservation laws to an third-order Burgers equation. Nonlinear Dynamics, 83(4), 2281-2292.
  • [31] Liu, H. (2015). Painlevé test, generalized symmetries, Bäcklund transformations and exact solutions to the third-order Burgers’ equations. Journal of Statistical Physics, 158(2), 433-446.
  • [32] Hirota, R. (1971). Exact solution of the Korteweg— de Vries equation for multiple collisions of solitons. Physical Review Letters, 27(18), 1192.
  • [33] Ablowitz, M. J., Ablowitz, M. A., Clarkson, P. A., & Clarkson, P. A. (1991). Solitons, nonlinear evolution equations and inverse scattering (Vol. 149), Cambridge University Press.
  • [34] Eslami, M., Fathi Vajargah, B., Mirzazadeh, M., & Biswas, A. (2014). Application of first integral method to fractional partial differential equations. Indian Journal of Physics, 88(2), 177- 184.
  • [35] Eslami, M., Mirzazadeh, M., Vajargah, B. F., & Biswas, A. (2014). Optical solitons for the resonant nonlinear Schrödinger's equation with time- dependent coefficients by the first integral method. Optik, 125(13), 3107-3116.
  • [36] Sanchez, P., Ebadi, G., Mojaver, A., Mirzazadeh, M., Eslami, M., & Biswas, A. (2015). Solitons and other solutions to perturbed Rosenau-KdV-RLW equation with power law nonlinearity. Acta Physica Polonica A, 127(6), 1577-1586.
  • [37] Dai, Z., Liu, J., & Liu, Z. (2010). Exact periodic kink-wave and degenerative soliton solutions for potential Kadomtsev–Petviashvili equation. Communications in Nonlinear Science and Numerical Simulation, 15(9), 2331-2336.
  • [38] Xu, Z., Chen, H., & Dai, Z. (2014). Rogue wave for the (2+ 1)-dimensional Kadomtsev–Petviashvili equation. Applied Mathematics Letters, 37, 34-38.
  • [39] Mirzazadeh, M., & Biswas, A. (2014). Optical solitons with spatio-temporal dispersion by first integral approach and functional variable method. Optik, 125(19), 5467-5475.
  • [40] Biswas, A., Mirzazadeh, M., Savescu, M., Milovic, D., Khan, K. R., Mahmood, M. F., & Belic, M. (2014). Singular solitons in optical metamaterials by ansatz method and simplest equation approach. Journal of Modern Optics, 61(19), 1550- 1555.
  • [41] Wang, C. (2016). Spatiotemporal deformation of lump solution to (2+ 1)-dimensional KdV equation. Nonlinear Dynamics, 84(2), 697-702.
  • [42] Khalid, M., Sultana, M., Zaidi, F., & Arshad, U. (2015). Application of Elzaki transform method on some fractional differential equations. Mathematical Theory and Modeling, 5(1), 89-96.
  • [43] Liao, S. (2003). Beyond perturbation: introduction to the homotopy analysis method. Chapman and Hall/CRC.
  • [44] Liao, S. J. (1995). An approximate solution technique not depending on small parameters: a special example. International Journal of Non- Linear Mechanics, 30(3), 371-380.
  • [45] Liao, S. (2012). Homotopy analysis method in nonlinear differential equations (pp. 153-165). Beijing: Higher education press.
  • [46] El-Tawil, M. A., & Huseen, S. N. (2012). The q- homotopy analysis method (q-HAM). International Journal of Applied Mathematics and Mechanics, 8(15), 51-75.
  • [47] El-Tawil, M. A., & Huseen, S. N. (2013). On convergence of the q-homotopy analysis method. International Journal of Contemporary Mathematical Sciences, 8(10), 481-497.
  • [48] Kumar, S., Kumar, A., Kumar, D., Singh, J., & Singh, A. (2015). Analytical solution of Abel integral equation arising in astrophysics via Laplace transform. Journal of the Egyptian Mathematical Society, 23(1), 102-107.
  • [49] Kumar, D., Singh, J., Kumar, S., & Singh, B. P. (2015). Numerical computation of nonlinear shock wave equation of fractional order. Ain Shams Engineering Journal, 6(2), 605-611.
  • [50] Khan, M., Gondal, M. A., Hussain, I., & Vanani, S. K. (2012). A new comparative study between homotopy analysis transform method and homotopy perturbation transform method on a semi infinite domain. Mathematical and Computer Modelling, 55(3-4), 1143-1150.
  • [51] Khan, M. (2014). A novel solution technique for two dimensional Burger’s equation. Alexandria Engineering Journal, 53(2), 485-490.
  • [52] Khuri, S. A. (2001). A Laplace decomposition algorithm applied to a class of nonlinear differential equations. Journal of Applied Mathematics, 1(4), 141-155.
  • [53] Kumar, D., Singh, J., & Kumar, S. (2014). Numerical computation of nonlinear fractional Zakharov–Kuznetsov equation arising in ion- acoustic waves. Journal of the Egyptian Mathematical Society, 22(3), 373-378.
  • [54] Veeresha, P., Prakasha, D. G., Singh, J., Kumar, D., & Baleanu, D. (2020). Fractional Klein-Gordon- Schrödinger equations with Mittag-Leffler memory. Chinese Journal of Physics, 68, 65-78.
  • [55] Singh, J., Kumar, D., & Swroop, R. (2016). Numerical solution of time-and space-fractional coupled Burgers’ equations via homotopy algorithm. Alexandria Engineering Journal, 55(2), 1753-1763.
  • [56] Singh, J., Kumar, D., Purohit, S. D., Mishra, A. M., & Bohra, M. (2021). An efficient numerical approach for fractional multidimensional diffusion equations with exponential memory. Numerical Methods for Partial Differential Equations, 37(2), 1631-1651.
  • [57] Elzaki, T. M. (2011). The new integral transform Elzaki transform. Global Journal of pure and applied mathematics, 7(1), 57-64.
  • [58] Khalid, M., Sultana, M., Zaidi, F., & Arshad, U. (2015). An Elzaki transform decomposition algorithm applied to a class of non-linear differential equations, Journal of Natural Sciences Research, 5, 48-56.
  • [59] Manafian, J., & Zamanpour, I. (2014). Application of the ADM Elzaki and VIM Elzaki transform for solving the nonlinear partial differential equations, Sci. Road Journal, 2(4), 37-50.
  • [60] Rashid, S., Hammouch, Z., Aydi, H., Ahmad, A.G. & Alsharif, A.M. (2021). Novel computations of the time-fractional Fisher’s model via generalized fractional integral operators by means of the Elzaki transform, Fractal and Fractional, 5(3), 94.
  • [61] Yavuz, M. (2020). Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivatives with power and Mittag- Leffler kernel. Advances in Difference Equations. 2020(1), 1-18.
  • [62] Abdeljawad, T. (2011). On Riemann and Caputo fractional differences. Computers & Mathematics with Applications, 62(3), 1602-1611.
  • [63] Nawaz, R., & Zada, L. (2018). Solving time fractional Sharma-Tasso-Olever equation by optimal homotopy asymptotic method. In AIP Conference Proceedings, 1978(1), 310002.