A simple method for studying asymptotic stability of discrete dynamical systems and its applications

A simple method for studying asymptotic stability of discrete dynamical systems and its applications

In this work, we introduce a simple method for investigating the asymptotic stability of discrete dynamical systems, which can be considered as an extension of the classical Lyapunov's indirect method. This method is constructed based on the classical Lyapunov's indirect method and the idea proposed by Ghaffari and Lasemi in a recent work. The new method can be applicable even when equilibia of dynamical systems are non-hyperbolic. Hence, in many cases, the classical Lyapunov's indirect method fails but the new one can be used simply. In addition, by combining the new stability method with the Mickens' methodology, we formulate some nonstandard finite difference (NSFD) methods which are able to preserve the asymptotic stability of some classes of differential equation models even when they have non-hyperbolic equilibrium points. As an important consequence, some well-known results on stability-preserving NSFD schemes for autonomous dynamical systems are improved and extended. Finally, a set of numerical examples are performed to illustrate and support the theoretical findings.

___

  • [1] Allen. L. J. S. An Introduction to Mathe- matical Biology. Prentice Hall, Upper Saddle River, NJ.
  • [2] Diethelm, K. The Analysis of Fractional Dif- ferential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin, Heidelberg, 2010.
  • [3] Khalil, H. K. (2022). Nonlinear Systems. 3rd Edition, Pearson.
  • [4] Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and Applications of Frac- tional Differential Equations, Elsevier.
  • [5] LaSalle, J. P. (1976). The Stability of Dynam- ical Systems. Society for Industrial and Ap- plied Mathematics, Philadelphia, PA.
  • [6] Perko. L. (2001). Differential Equations and Dynamical Systems, Springer, New York.
  • [7] Podlubny. I. (1999). Fractional Differential Equations. Academic Press, San Diego.
  • [8] Stuart, A., & Humphries. A. R. (1998). Dynamical Systems and Numerical Analysis. Cambridge University Press.
  • [9] Alzabut. J., Tyagi. S., & Martha. S. C. (2020). On the stability and Lyapunov direct method for fractional difference model of BAM neu- ral networks. Journal of Intelligent & Fuzzy Systems, 38(3), 2491-2501.
  • [10] Alzabut. J., Tyagi. S., & Abbas. S. (2020). Discrete fractional-order BAM neural net- works with leakage delay: existence and sta- bility results. Asian Journal of Control, 22(1), 143-155.
  • [11] Alzabut. J., George Maria Selvam. A, Dhi- neshbabu. R., Tyagi. S., Ghaderi. M., & Reza- pour. S. (2022). A Caputo discrete fractional- order thermostat model with one and two sensors fractional boundary conditions de- pending on positive parameters by using the Lipschitz-type inequality. Journal of Inequali- ties and Applications, (2022), Article number: 56.
  • [12] Alzabut. J., George Maria Selvam. A., Dhakshinamoorthy. V., Mohammadi. H., & Rezapour, S. (2022). On chaos of dis- crete time fractional order host-immune- tumor cells interaction model. Journal of Applied Mathematics and Computing, https://doi.org/10.1007/s12190-022-01715-0.
  • [13] Dianavinnarasi. J., Raja. R., Alzabut. J., Cao. J., Niezabitowski. M., & Bagdasar, O. (2022). Application of Caputo–Fabrizio operator to suppress the Aedes Aegypti mosquitoes via Wolbachia: An LMI approach. Mathematics and Computers in Simulation, 201, 462-485.
  • [14] Goufo. E. F. D., Ravichandran. C., & Bira- jdar. G. A. (2021). Self-similarity techniques for chaotic attractors with many scrolls using step series switching. Mathematical Modelling and Analysis, 26(4), 591-611.
  • [15] Iswarya. M., Raja, R., Cao, J., Niez- abitowski, M., Alzabut, J., & Maharajan. C. (2022). New results on exponential input-to- state stability analysis of memristor based complex-valued inertial neural networks with proportional and distributed delays. Mathe- matics and Computers in Simulation, 201, 440-461.
  • [16] Kaliraj, K., Manjula, M., Ravichandran, C., & Nisar, K. S. (2022). Results on neutral dif- ferential equation of sobolev type with non- local conditions. Chaos, Solitons & Fractals, 158, 112060.
  • [17] Kongson, J., Sudsutad. W., Thaiprayoon. C., Alzabut. J., & Tearnbucha, C. (2021). On analysis of a nonlinear fractional system for social media addiction involving Atangana- Baleanu-Caputo derivative. Advances in Dif- ference Equations, (2021), Article number: 356.
  • [18] Logeswari, K., Ravichandran. C., & Nisar, K. S. (2020). Mathematical model for spreading of COVID-19 virus with the Mittag-Leffler kernel. Numerical Meth- ods for Partial Differential Equations, https://doi.org/10.1002/num.22652.
  • [19] Maji, C., Basir, F. A., Mukherjee, D., Nisar, K. S., & Ravichandran, C. (2022). COVID-19 propagation and the usefulness of awareness- based control measures: A mathematical model with delay. AIMS Mathematics, 7(7), 12091-12105.
  • [20] Matar, M. M., Skhail, E. S. A., & Alzabut, J. (2021). On solvability of nonlinear fractional differential systems involving nonlocal initial conditions. Mathematical Methods in the Ap- plied Sciences, 44(10), 2021.
  • [21] Nisar, K. S., Logeswari, K., Vijayaraj, V., Baskonus, H. M., & Ravichandran. C. (2022). Fractional order modeling the gemini virus in capsicum annuum with optimal control. Frac- tal and Fractional, 6(2), 61.
  • [22] Nisar, K. S., Jothimani, K., Ravichandran, C., Baleanu, D., & Kumar, D. (2022). New approach on controllability of Hilfer fractional derivatives with nondense domain. AIMS Mathematics, 7(6), 10079-10095.
  • [23] Nisar, K. S., Jothimani, K, Kaliraj, K., & Ravichandran, C. (2021). An analysis of con- trollability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain. Chaos, Solitons & Fractals, 146, 110915.
  • [24] Ravichandran, C., Jothimani, K., Nisar, K. S., Mahmoud, E. E., & Yahia, I. S. (2022). An interpretation on controllabil- ity of Hilfer fractional derivative with non- dense domain. Alexandria Engineering Jour- nal, 61(12), 9941-9948.
  • [25] Ravichandran, C., Sowbakiya, V., Nisar, K. S. (2022). Study on existence and data depen- dence results for fractional order differential equations. Chaos, Solitons & Fractals, 160, 112232.
  • [26] Selvam, G. M., Alzabut, J., Dhakshinamoor- thy, V., Jonnalagadda, J. M., & Abodayeh. K. (2021). Existence and stability of nonlin- ear discrete fractional initial value problems with application to vibrating eardrum. Math- ematical Biosciences and Engineering, 18(4) 3907-3921.
  • [27] Shammakh, W., George Maria Selvam, A., Dhakshinamoorthy, V., & Alzabut. J. (2022). A study of generalized hybrid discrete panto- graph equation via hilfer fractional operator. Fractal and Fractional, 6(3), 152.
  • [28] Veeresha, P., Prakasha, D. G., Ravichan- dran, C., Akinyemi, L., & Nisar, K. S. (2022). Numerical approach to generalized coupled fractional Ramani equations, Numer- ical approach to generalized coupled frac- tional Ramani equations. International Jour- nal of Modern Physics, 36(05), 2250047.
  • [29] Lyapunov, A. M. (1992). The general prob- lem of the stability of motion. International Journal of Control, 55(3), 531-534.
  • [30] Ghaffari. A., & Lasemi. N. (2015). New method to examine the stability of equilib- rium points for a class of nonlinear dynamical systems. Nonlinear Dynamics, 79, 2271-2277.
  • [31] Elaydi, S. (2005). An Introduction to Differ- ence Equations, Springer, New York.
  • [32] Mickens, R. E. (1993). Nonstandard Finite Difference Models of Differential Equations. World Scientific.
  • [33] Mickens, R. E. (2000). Applications of Non- standard Finite Difference Schemes. World Scientific.
  • [34] Mickens, R. E. (2005). Advances in the Ap- plications of Nonstandard Finite Difference Schemes. World Scientific, 2005.
  • [35] Mickens. R. E. (2002). Nonstandard finite difference schemes for differential equations. Journal of Difference Equations and Applica- tions, 8(9), 823-847.
  • [36] Mickens, R. E. (2020). Nonstandard Finite Difference Schemes: Methodology and Appli- cations. World Scientific.
  • [37] Anguelov. R., & Lubuma, J. M.-S. (2001). Contributions to the mathematics of the non- standard finite difference method and Appli- cations. Numerical Methods for Partial Dif- ferential Equations, 17(5), 518-543.
  • [38] Patidar, K. C. (2005). On the use of non- standard finite difference methods. Journal of Difference Equations and Applications, 11(8), 735-758.
  • [39] Patidar, K. C. (2016). Nonstandard finite dif- ference methods: recent trends and further developments. Journal of Difference Equa- tions and Applications, 22(6), 817-849.
  • [40] Adamu, E. M., Patidar. C.,& Ramanan- toanina. A. (2021). An unconditionally sta- ble nonstandard finite difference method to solve a mathematical model describing Vis- ceral Leishmaniasis. Mathematics and Com- puters in Simulation, 187, 171-190.
  • [41] Adekanye. O.,& Washington. T. (2018). Non- standard finite difference scheme for a tacoma narrows bridge model. Applied Mathematical Modelling, 62, 223-236.
  • [42] Agbavon. K. M., & Appadu. A. R. (2020). Construction and analysis of some non- standard finite difference methods for the FitzHugh-Nagumo equation.Numerical Meth- ods for Partial Differential Equations, 36(5), 1145-1169.
  • [43] Anguelov. R., & Lubuma. J. M. -S. (2003). Nonstandard finite difference method by non- local approximation. Mathematics and Com- puters in Simulation, 61(3-6), 465-475.
  • [44] Chapwanya. M., Jejeniwa. O. A., Appadu A. R., & Lubuma. J. M. -S. (2019). An explicit nonstandard finite difference scheme for the FitzHugh-Nagumo equations. Inter- national Journal of Computer Mathematics, 96(10), 1993-2009.
  • [45] Cresson. J., & Pierret. F. (2016). Non stan- dard finite difference scheme preserving dy- namical properties. Journal of Computa- tional and Applied Mathematics, 303, 15-30.
  • [46] Cresson. J., & Szafra ́nskac. A. (2017). Dis- crete and continuous fractional persistence problems-the positivity property and applica- tions. Communications in Nonlinear Science and Numerical Simulation, 44, 424-448.
  • [47] Egbelowo. O. F. (2018). Nonstandard fi- nite difference approach for solving 3- compartment pharmacokinetic models. Inter- national Journal for Numerical Methods in Biomedical Engineering, 34(9), e3114.
  • [48] Elaiw. A. M., & Alshaikh. M. A. (2020). Sta- bility preserving NSFD scheme for a general virus dynamics model with antibody and cell- mediated responses. Chaos, Solitons & Frac- tals, 138, 109862.
  • [49] Fatoorehchi. H., & Ehrhardt. M. (2022). Nu- merical and semi-numerical solutions of a modified Th ́evenin model for calculating ter- minal voltage of battery cells. Journal of En- ergy Storage, 45, 103746.
  • [50] Khalsaraei, M. M., Shokri, A., Ramos, H., & Heydari, S. (2021). A positive and elemen- tary stable nonstandard explicit scheme for a mathematical model of the influenza disease. Mathematics and Computers in Simulation, 182, 397-410.
  • [51] Kojouharov, H. V., Roy, S., Gupta, M., Alal- hareth, F., & Slezak. J. M. (2021). A second- order modified nonstandard theta method for one-dimensional autonomous differential equations. Applied Mathematics Letters, 112, 106775.
  • [52] Namjoo, M., Zeinadini, M., Zibaei, S. (2018). Nonstandard finite-difference scheme to ap- proximate the generalized Burgers-Fisher equation. Mathematical Methods in the Ap- plied Sciences, 41(17) 8212-8228.
  • [53] Sweilam, N. H., El-Sayed, A. A. E., & Boulaaras, S. (2021). Fractional-order advection-dispersion problem solution via the spectral collocation method and the non- standard finite difference technique. Chaos, Solitons & Fractals, 144, 110736.
  • [54] Tadmon. C., & Foko, S. (2020). Non- standard finite difference method applied to an initial boundary value problem describing hepatitis B virus infection. Journal of Differ- ence Equations and Applications, 26(1), 122- 139.
  • [55] Dang. Q. A., & Hoang. M. T. (2020). Posi- tive and elementary stable explicit nonstan- dard Runge-Kutta methods for a class of au- tonomous dynamical systems. International Journal of Computer Mathematics, 97(10), 2036-2054.
  • [56] Dang. Q. A., & Hoang. M. T. (2020). Pos- itivity and global stability preserving NSFD schemes for a mixing propagation model of computer viruses. Journal of Computational and Applied Mathematics, 374, 112753.
  • [57] Dang. Q. A., & Hoang. M. T. (2019). Non- standard finite difference schemes for a gen- eral predator-prey system. Journal of Com- putational Science, 36, 101015.
  • [58] Hoang. M. T. (2021). Reliable approxima- tions for a hepatitis B virus model by non- standard numerical schemes. Mathematics and Computers in Simulation, 193, 32-56.
  • [59] Hoang, M. T. (2022). Dynamically consistent nonstandard finite difference schemes for a virus-patch dynamic model. Journal of Ap- plied Mathematics and Computing, 68, 3397- 3423.
  • [60] Hoang, M. T., Zafar, Z. U. A., & Ngo, T. K. Q. (2020). Dynamics and numerical approx- imations for a fractional-order SIS epidemic model with saturating contact rate. Compu- tational and Applied Mathematics, 39, Article number: 277.
  • [61] Dimitrov. D. T., & Kojouharov. H. V. (2005). Nonstandard finite-difference schemes for general two-dimensional autonomous dy- namical systems. Applied Mathematics Let- ters, 18(7), 769-774.
  • [62] Dimitrov. D. T., & Kojouharov. H. V. (2017). Stability-preserving finite difference methods for general multi-dimensional autonomous dynamical systems. International Journal of Numerical Analysis and Modeling, 4(2), 280- 290.
  • [63] Gupta. M., Slezak, J. M., Alalhareth. F., Roy. S., & Kojouharov. H. V. (2020). Second- order nonstandard explicit euler method. AIP Conference Proceedings, 2302, 110003.
  • [64] Wood, D. T., & Kojouharov, H. V. (2015). A class of nonstandard numerical methods for autonomous dynamical systems. Applied Mathematics Letters, 50, 78-82.
  • [65] Tyrtyshnikov, E. E. (1997). A Brief Intro- duction to Numerical Analysis. Springer Sci- ence+Business Media, New York.
  • [66] Smith, H. L., Waltman. P. (1995). The The- ory of the Chemostat: Dynamics of Microbial Competition. Cambridge University Press.
An International Journal of Optimization and Control: Theories & Applications (IJOCTA)-Cover
  • ISSN: 2146-0957
  • Yayın Aralığı: Yılda 2 Sayı
  • Yayıncı: Prof. Dr. Ramazan YAMAN