Düşük sıcaklıkların tohum çimlenmesi üzerine etkileri

Tarımsal açıdan öneme sahip bitkilerde hızlı ve birörnek tohum çimlenmesi ve fide çıkışı elde etmek bitkisel üretimi ve verimliliği artırmanın ilk ve en önemli aşamalarından birini teşkil etmektedir. Ancak, doğrudan tohum ekimi yöntemi ile yetiştirilen sıcak iklim bitkilerinde düşük sıcaklık bu amaca ulaşmada karşılaşılan en önemli sorunlardan biri olarak karşımıza çıkmaktadır. Düşük sıcaklıklara maruz kalan bitkilerde görülen üşüme zararı 0 ile 15 °C arasındaki sıcaklıklarda ortaya çıkan fizyolojik bir bozukluk olup bu zarara uğramış bitkiler üşüme zararına gösterdikleri hassasiyet bakımından ‘hassas’ ve ‘dayanıklı’ bitkiler olarak iki ana gruba ayrılmaktadırlar. Bu bitkilerin üşüme zararına gösterdikleri hassasiyet tohumların bulundukları çevresel faktörler ile tohumun kendisinden kaynaklanan genotipe bağlı faktörler olarak değişiklik göstermektedir. Bu makalede yukarıda bahsedilen faktörler genel hatları ile ele alınarak, üşüme zararının oluşma mekanizması ile bu zararın önlenmesinde halen var olan ve yeni geliştirilen yöntemler ile biyoteknolojinin bu alanda sağlayacağı potansiyel katkılar tartışılacaktır.

The effects of chilling temperatures on seed germination

Rapid seed germination or seedling emergence is a prerequisite for increased yield and profitability; however, low temperatures present a major limitation to achieve this goal for direct-seeded warm season agronomic and horticultural crops. Chilling injury is a physiological disorder that occurs at temperatures between 0 and 15 °C. Plants may be divided into tolerant or sensitive species, depending on their susceptibility to chilling injury. The degree of injury is dependent on both environmental and seed-related factors. This review will focus on these factors, the mechanisms of injury and the methods to alleviate the injury.

___

  • Bartkowski, E.J., Buxton, D.R., Katterman, F.R.H., Kircher, H.W., 1977. Dry Seed Fatty Acid Composition and Seedling Emergence of Lima Cotton at Low Soil Temperatures. Agron. J., 69:37-40.
  • Bennet, M.A., Fritz, V.A., Callan, N.W., 1992. Impact Of Seed Treatments on Crop Stand Establishment. HortTechnology, 2:345-349.
  • Bradford, K.J., May, D.M., Hoyle, B.J., Skibinski, Z.S., Scott, S.J., Tyler, K.B., 1988. Seed and Soil Treatments to Improve Emergence of Muskmelon from Cold and Crusted Soils. Crop Sci. 28:1001-1005.
  • Bradov, J.M., 1990. Chilling Sensitivity of Photosynthetic Oil-Seedlings. II. Cucurbitaceae. J.Exp. Bot., 41:1595-1600.
  • Bray, C.F., 1995. Biochemical Processes During the Osmopriming of Seeds. (Editörler Kigel, J.,Galili, G.) Seed Development and Germination, Marcel Dekker, Inc., New York, USA. 767-789.
  • Bussell, W.T., Gray, D., 1976. Effetcs of Presowing Seed Treatments and Temperatures on Tomato Seed Germination and Seedling Emergence. Sci. Hortic, 5:101-109.
  • Cristiansen, M.N., 1968. Induction and Preventition of Chilling Injury to Radicle Tips of Imbibing Cotton Seeds. Plant Physiol., 42:431-433.
  • Croser, J.S., Clarke, H.J., Siddique, K.H.M., Khan, T.N., 2003. Low-Temperature Stress: Implications for Chickpea (Cicer arietinum L.) Improvement. Critical Rev. Plant Sci.,22(2):185-219.
  • Crowe, J.H., Hoekstra, F.A., Crowe, L.M., 1989. Membrane Phase Transitions are Responsible for Imbibitional Damage in Dry Pollen. Proc. Natl. Acad. Sci., 86:520-523.
  • Demir, L, Öztokat, C, 2003. Effect of Salt Priming on Germination and Seedling Growth at Low-Temperatures in Watermelon Seeds During Development. Seed Sci. Technol.,31:765-770.
  • Dickson, M.H., Duczmal, K., Shannon, S., 1973. Imbibition Rate and Seed Composition as Factors Affecting Transverse Cotyledon Cracking in Bean {Phaseolus vulgaris L.) Seed. J. Amer. Soc. Hort. Sci., 98:509-513.
  • Herner, R.C., 1986. Germination under Cold Soil Conditions. HortScience, 21(5): 1118-1122.
  • Herner, R.C., 1990. The Effects of Chilling Temperatures during Seed Germination and Early Seedling Establishment. (Wang, C.Y., editör). Chilling Injury of Horticultural Crops. CRC Press, Boca Raton, FL, USA. 51-70.
  • Hobbs, P.R., Obendorf, R.L., 1972. Interaction of Initial Seed Moisture and Imbibitional Temperature on Germination and Productivity of Soybean. Crop Sci., 12:664-667.
  • Irwin, C.C, Price, H.C., 1983. The Relationship of Radicle Length to Chilling Sensitivity of Pregerminated P'epper Seeds. J. Amer. Soc. Hort. Sci., 108: 484-486.
  • Jacobs D.I., van der Heijden, R., Verpoorte, R,. 2000. Proteomics in Plant Biotechnology and Secondary Metabolism Research. Phytochem Anal., 11:277-287.
  • Jennings, P., Saltveit, M.E. 1994. Temperature Effects of Imbibition and Germination of Cucumber (Cucumis sativus) Seeds. J. Amer. Soc. Hort. Sci., 119(3): 464-467.
  • Johnson, G.A., Hicks, D.R., Stewart, F., Duan, X., 1999. Use of Temperature Responsive Polymer Seed Coating to Control Seed Germination. Acta Horticulturae, 504:229-236.
  • Korkmaz, A., Pill, W.G., Cobb, B.B., 1999. Rate and Synchrony of Seed Germination Influence Growth of Hydroponic Lettuce. HortScience, 34(1): 100-104.
  • Korkmaz, A., Pill, W.G., 2003. The Effect of Different Priming Treatments and Storage Conditions on Germination Performance of Lettuce Seeds. Europ. J. Hort. Sci.,68(6):260-265.
  • Korkmaz, A., Tiryaki, I., Nas, M.N., Ozbay, N., 2004. Inclusion of Plant Growth Regulators into Priming Solution Improves Low Temperature Germination and Emergence of Watermelon Seeds. Can. J. Plant Sci., 84(4): 1161-1165.
  • Korkmaz, A., 2005. Inclusion of Acetyl Salicylic Acid and Methyl Jasmonate into the Priming Solution Improves Low Temperature Germination and Emergence of Sweet Pepper. HortScience, 40(1): 197-200.
  • Korkmaz, A., Özbay, N., Tiryaki, I., Nas, M.N., 2005. Combining Priming and Plant Growth Regulators Improves Muskmelon Germination and Emergence at Low Temperatures.Europ. J. Hort. Sci., 70(l):29-34.
  • Leopold, A.C., 1980. Temperature Effects on Soybean Imbibition and Leakage. Plant Physiol.,65:1096-1098.
  • Lyons, J.M., 1973. Chilling Injury in Plants. Annu. Rev. Plant Physiol., 24:445-466.
  • Maluf, W.F., Tigchelaar, E.C., 1982. Relationship Between Fatty Acid Composition and Low Temperature Seed Germination in Tomato. J. Amer. Soc. Hort. Sci., 105:280-283.
  • Murata, N., Los, D.A., 1997. Membrane Fluidity and Temperature Perception. Plant Physiol., 115:875-879.
  • Murphy, D.J., 1999. The Production of Novel Oil Crops. Current Opinion Biotech. 10:175-180.
  • Nelson, J.M., Sharpies, G.C., 1980. Effect of Growth Regulators on Germination of Cucumber and Other Cucurbit Seeds at Suboptimal Temperatures. HortScience, 15:253-254.
  • Ni, B.R., 2001. Alleviation of Seed Imbibitional Injury Using Polymer Film Coating. British Crop Protection Council Symposium Proceedings. No:76, 73-82.
  • Nishida I., Murata N., 1996. Chilling Sensitivity in Plants and Cyanobacteria: The Crucial Contribution of Membrane Lipids. Annu. Rev. Plant Physiol., 47:541-568.
  • Pill, W.G., 1991. Advances in Fluid Drilling. HortTechnology, l(l):59-65.
  • Pill, W.G., Frett, J.J., Morneau, D.C., 1991. Germination and Seedling Emergence of Primed Tomato and Asparagus Seeds Under Adverse Conditions. HortScience, 26:1160-1162.
  • Pill, W.G., 1995". Low Water Potential and Pre-Sowing Germination Treatments to Improve Seed Quality. (Basra, A.S., Editör). Seed Quality. Food Products Press, New York, NY, USA. 319-359.
  • Posmyk, M.M., Corbineau, F., Vinel, D., Baily,C, Come, D., 2001. Osmoconditioning Reduces Physiological and Biochemical Damage Induced by Chilling in Soybean Seeds. Physiologia Plantarum, 111:473-482.
  • Powell, A.Â., Matthews, S., 1981. A Physical Explanation for Solute Leakage from Dry Pea Embryos During Imbibition. J. Exp. Bot, 32:1045-1050.
  • Priestly, D.A., Leopold, A.C., 1986. Alleviation of Imbibitional Chilling Injury by Use of Lanolin. Crop Sci., 26:1252-1254.
  • Pretonus, J.C., Small, J.G;C, Fagarstedt, K.V., 1998. The Effect of soaking Injury in Seeds of Phaselous vulgaris L. on Germination, Respiration and Adenylate Energy Change. Seed Sci. Res., 8:17-28,
  • Ross, E.E., Manalo, J.R., 1976. Effect of Initial Seed Moisture on Snap Bean Emergence from Cold Soil. J. Amer. Soc. Hort. Sci., 101:321-324.
  • Semhdner G., Parthier, B.; 1993. The Biochemistry and the Physiological and Molecular Action of Jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol., 33:569-589.
  • Senaratna, T., Touchell, D., Bunn, E., Dixon, K., 2000. Acetyl Salicylic Acid (Aspirin) and Salicylic Acid Induce Multiple Stress Tolerance in Bean and Tomato Plants. Plant Growth Regul.30:157-161.
  • Shelton, A.M., Tang, J.D., Roush, R.T., Metz, T.D., Earle, E.D., 2000. Field Tests on Managing Resistance to Bt-Engineered Plants. Nat. Biotechnol., 18:339-342.
  • Simon, E.W., Harun, R.M.R., 1972. Leakage During Seed Imbibition. J. Exp. Bot., 23:1076-1085.
  • Styer, R.C., Cantliffe, D.J., 1983. Relationship Between Environment During Seed Development and Seed Vigor of Two Endosperm Mutants of Corn. J. Amer. Soc. Hort. Sci., 108:721-728.
  • Tadolini, B., 1988, Polyamine Inhibition of Lipoperoxidation: The Influence of Polyamines on Iron Oxidation in the Presence of Compounds Mimicking Phospholipid Polar Heads. Biochem. J. 249:33-36.
  • Traore, S.B., Carlson, R.E., Pilcher, J.D., Rice, M.E., 2000. Bt and non-bt maize growth and development as affected by temperature and drought stress. Agron. J., 92:1027-1035.
  • Taylor, A.G., 1987. Seed coatings to reduce imbibitional chilling injury. Bean Imp. Coop., 30:30-31.
  • Taylor, A.G., Prusinski, J., Hill, H.J., Dickson, M.D. 1992. Influence of Seed Hydration on Seedling Performance. HortTechnology, 2(3):336-344.
  • Tully, R.E., Musgrave, M.E., Leopold, A.C., 1981. The Seed Coat as a Control of Imbibitional Chilling Injury. Crop Sci., 21:312-317.
  • Watkins, J.T., Cantliffe, D.J., Huber, D.J., Nell, T.A., 1985. Gibberellic Acid Stimulated Degradation of Endosperm in Pepper. J. Amer. Soc. Hort. Sci., 110:61-65.
  • Zhang, H.X., Hodson, J.N., Williams, J.P., Blumwald, E., 2001. Engineering Salt-Tolerant Brassica Plants: Characterization of Yield and Seed Oil Quality in Transgenic Plants with Increased Vacuolar Sodium Accumulation. Proc. Nat. Acad. Sci., 98(22): 12832— 12836.
  • Zhao, J.Z., Cao, J., Li, Y., Collins, H.L., Roush, R.T., Earle, E.D., Shelton, A.M., 2003. Transgenic Plants Expressing Two Bacillus thuringiensis Toxins Delay Insect Resistance Evolution. Nat. Biotechnol., 21:1493-1497.
  • Zhu, T., 2003. Global Analysis of Gene Expression Using Genechip Microarrays. Current Opinion in Plant Biology, 6:418-425.