Yer Elmasının Helianthus tuberosus L. Mikrodalga ile Kurutulması

Mikrodalga tekniğinin yer elması Helianthus tuberosus L. dilimlerinin kurutulması prosesinde potansiyel kullanım olanağı araştırılmış ve sonuçların değerlendirilmesi, mikrodalga fırın ile yer elması dilimlerinin kurutulma karakteristiklerinde ilerleme sağlandığını göstermiştir. Kurutulmuş yer elması dilimlerinin daha iyi görünümlerine ek olarak, mikrodalga teknolojisi kullanıldığında, kurutma hızında ve kurutma zamanında sırasıyla, 200 kattan fazla artış ve 155 kattan fazla azalış gözlenmiştir. Ek olarak, proses koşullarının, mikrodalga ile kurutma işlemi üzerinde yüksek etkiye sahip olduğu bulunmuştur. Özellikle mikrodalga gücü, proses üzerindeki üstün ve ürün kalitesi üzerindeki olumsuz etkilerinden dolayı çok önemlidir. Mikrodalga fırında ve geleneksel kurutma fırınında gerçekleştirilen kurutma işlemlerinin daha iyi anlaşılması ve tanımlanması için kinetik analizleri yapılmıştır. Regresyon analizi sonuçları üç modellin, Page, Logaritmik ve Midilli eşitliklerinin, bu amaç için birbirine yakın derecede başarılı olduğunu göstermiştir

Microwave Drying of Jerusalem Artichoke Helianthus tuberosus L.

The potential use of microwave technique in drying process of Jerusalem artichoke Helianthus tuberosus L. slices was investigated and the results indicated the improvement in drying characteristics of artichoke slices through microwave oven. In addition to better appearance of dried artichoke slices, more than 200 folds increase and almost 155 folds decrease were observed in drying rate and drying time, respectively, when microwave technology was utilized. Additionally, process conditions were found to possess high influences on the microwave drying, especially the power effect was crucial due to its superior and adverse effects on process and product quality, respectively. Kinetic analysis were carried out for better understanding and description of drying processes operated in conventional oven and microwave one. The regression results indicated the similar success of three models, Page, Logarithmic and Midilli equations, for these purposes

___

  • Kays, S.J., Nottingham, S.F., 2008. Biology and chemistry of Jeruslaem artichoke: Helianthus tuberosus L. New York: CRC Press Taylor and Francis Group, Boca Raton, London.
  • Van Loo, J., Coussment, P., Leenheer, L., Hoebregs, H., Smits, G., 1995. On the presence of inulin and oligofructose as a natural ingredients in the western diet. Critical Reviews in Food Science and Nutrition 6: 525-552.
  • Watherhouse, M.L., Chatterton, N.J., 1993. Glossary of fructan terms, In: Suzuki M., Chatteron N. J. (Eds.), Science and technology of fructans. CRC Press, Boca Raton, FL, pp. 2-7.
  • Tungland, B.C., Meyer, D., 2002. Non digestible oligo- and polysaccharides (dietary fiber): their physiology and role in human health and food. Comprehensive Reviews in Food Science and Food Safety 1: 73-92.
  • Kaur, N., Gupta, A.K., 2002. Applications of inulin and oligofructose in health and nutrition. Journal of Biosciences 27: 703-714.
  • Cabezas, M.J., Rabert, C., Bravo, S., Shene, C., 2002. Inulin and sugar contents in Helianthus tuberosus and Cichorium intybus tubers: Effect of postharvest storage temperature. Journal of Food Science 67: 2860-2865.
  • Modler, H.W., Jones, J.D., Mazza, G., 1993. Observations on long-term storage and processing of tuberosus). Food Chemistry 48: 279-284. tubers (Helianthus
  • Takeuchi, J., Nagashima, T., 2011. Preparation of dried chips from Jerusalem artichoke (Helianthus tuberosus) tubers and analysis of their functional properties. Food Chemistry 126: 922–926.
  • Al-Harahsheh, M., Al-Muhtaseb, A.H., Magee, T.R.A., 2009. Microwave drying kinetics of tomato pomace: Effect of osmotic dehydration. Chemical Engineering and Processing 48: 524-531.
  • Giri, S.K., Prasad, S., 2007. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. Journal of Food Engineering 78: 512-521.
  • Mcloughlin, C.M., Mcminn, W.A.M., Magee, T.R.A., 2003. Microwave drying of multicomponent powder systems. Drying Technology 21: 293-309.
  • Sharma, G.P., Prasad, S., 2006. Optimization of process parameters for microwave drying of garlic cloves. Journal of Food Engineering 75: 441-446.
  • Diamante, L.M., Munro, P.A., 1993. Mathematical modelling of the thin layer solar drying of sweet potato slices. Solar Energy 51: 271-276.
  • Lewis, W.K., 1921. The rate of drying of solid materials. Industrial Engineering Chemistry 13(5): 427-442.
  • Bruce, D.M., 1985. Exposed-layer barley drying, three models fitted to new data up to 150°C. Journal of Agricultural Engineering Research 32: 337-347.
  • Overhults, D.G., White, G.M., Hamilton, H.E., Ross, I.J., 1973. Drying soybeans with heated air. Transactions of American Society of Agricultural Engineers 16: 112-113.
  • Henderson, S.M., Pabis, S., 1961. Grain drying theory I: temperature effect on drying coefficient. Journal of Agricultural Research Engineering 6: 169-174.
  • Yaldiz, O., Ertekin, C., Uzun, H.I., 2001. Mathematical modeling of thin layer solar drying of sultana grapes. Energy 26: 457-465.
  • Midilli, A., Küçük, H., 2003. Mathematical modelling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management 46: 1667-1679.
  • Wang, J., Sheng, K., 2006. Far-infrared and microwave drying of peach. LWT-Food Science and Technology 39: 247-255.
  • Mudgett, R.E., 1990. Developments in microwave food processing, In: Schwartzberg H.E., Rao M.A. (Eds.), engineering. Basic symposium series. Marcel Dekker, New York, pp. 359-403. food process
  • Kharaisheh, M.A.M., Cooper, T.J.R., Magee, T.R.A., 1995. Investigation and modeling of combined microwave and air drying. Transaction of Institution of Chemical Engineers 73(c): 121-126.
  • Souraki, B.A., Andres, A., Mowala, D., 2009. Mathematical modeling of microwave assisted inertmedium fluidized bed drying of cylindrical carrot samples. Chemical Engineering and Processing 48: 296-305.