Sürdürülebilir Gıda, Gıda Takviyesi ve Gıda Katkı Maddesi Üretiminde Alglerin Önemi

Dünya nüfusunun hızla artması, çevresel bozulma, gıda kaynakları için rekabet ve tarımın uluslararası ekonomiye entegrasyonu gibi nedenler gıda sürdürülebilirliği için tehdit oluşturmaktadır. Günümüzde potansiyel yeni gıda kaynağı arayışı ön plandadır. Bu noktada algler öne çıkmaktadır. Algler içeriğinde protein, çoklu doymamış yağ asitleri, polisakkarit, pigment, sterol, vitamin ve mineraller gibi önemli biyoaktif bileşenler bulundurmaktadır. Bu değerli biyoaktif bileşenlere ek olarak alglerin doğal ve sürdürülebilir gıda kaynağı olarak görülmesinin nedenleri arasında alglerin bölünerek çoğalıp hızla biyokütle oluşturmaları ve uygun koşullarda açık sistemler kullanılarak düşük maliyetlerle yetiştirilebilmesi gibi faktörlerde bulunmaktadır. Alglerin gıda olarak tüketimi özellikle Uzak Doğu’da geleneksel bir uygulama olmasına rağmen, günümüzde alglerin gıda endüstrisinde ticarileşme potansiyeli, alglerin gıda katkısı, gıda takviyesi veya gıda bileşeni olarak kullanılmalarıyla artmaktadır. Tüm bu bilgiler doğrultusunda alglerin gıda endüstrisindeki öneminin yakın gelecekte artması beklenmektedir. Bu çalışmada biyoaktif bileşenler için potansiyel alg kaynakları, elde edilen ürünler ve günümüzdeki ticari üretimi konusunda bilgiler verilmiştir.

Importance of Algae in Production of Sustainable Food, Food Supplements and Food Additives

Rapid increase in the world population, environmental degradation, competition for food resources, and the integration of agriculture into the global economy pose threats to food sustainability. Currently, there is a prominent search for potential new food sources, and in this context, algae have emerged as a notable candidate. Algae contain significant bioactive compounds such as proteins, polyunsaturated fatty acids, polysaccharides, pigments, sterols, vitamins, and minerals. In addition to these valuable bioactive compounds, algae are perceived as a natural and sustainable food source due to their ability to rapidly multiply and generate biomass under favorable conditions, as well as their ability to be cultivated at low costs using open systems. While algae consumption as a food has traditionally been prevalent in the Far East, the commercial potential of algae in the food industry has recently increased with their utilization as food additives, dietary supplements, and food ingredients. Based on all these insights, it is expected that the importance of algae in the food industry will continue to grow in the near future. This review provides information on potential algae sources for bioactive compounds, derived products, and current commercial production, emphasizing their significance.

___

  • [1] Glavič, P., Lukman, R. (2007). Review of sustainability terms and their definitions. Journal of Cleaner Production, 15(18), 1875-1885.
  • [2] Purvis, B., Mao, Y., Robinson, D. (2019). Three pillars of sustainability: in search of conceptual origins. Sustainability Science, 14(3), 681-695.
  • [3] Rueda, X., Garrett, R.D., Lambin, E.F. (2017). Corporate investments in supply chain sustainability: Selecting instruments in the agri-food industry. Journal of Cleaner Production, 142, 2480-2492.
  • [4] Brklacich, M., Bryant, C.R., Smit, B. (1991). Review and appraisal of concept of sustainable food production systems. Environmental Management, 15(1), 1-14.
  • [5] Usmani, M.A., Toppo, K., Nayaka, S., Suseela, M.R., Sheikh, S. (2015). Role of algae in sustainable food, health and nutritional security: An overview. Uttar Pradesh State Biodiversity Board, 2015, 83-88.
  • [6] Food and Agriculture Organization. (2019). State of Food Insecurity in the World 2019 Report, http://www.fao.org/3/ca5249tr/ca5249tr.pdf, Haziran 2020.
  • [7] Mariutti, L. R. B., Rebelo, K. S., Bisconsin-Junior, A., de Morais, J. S., Magnani, M., Maldonade, I. R., & Cazarin, C.B.B. (2021). The use of alternative food sources to improve health and guarantee access and food intake. Food Research International, 149, 110709.
  • [8] Tan, K., Zhang, H., Li, S., Ma, H., Zheng, H. (2022). Lipid nutritional quality of marine and freshwater bivalves and their aquaculture potential. Critical Reviews in Food Science and Nutrition, 62(25), 6990-7014.
  • [9] Grossmann, L., Weiss, J. (2021). Alternative protein sources as technofunctional food ingredients. Annual Review of Food Science and Technology, 12, 93-117.
  • [10] Thavamani, A., Sferra, T. J., Sankararaman, S. (2020). Meet the meat alternatives: The value of alternative protein sources. Current Nutrition Reports, 9, 346-355.
  • [11] İlter, I., Akyıl, S., Koç, M., Kaymak-Ertekin, F. (2016). Alglerden elde edilen stabilize edici maddeler. Akademik Gıda, 14(3), 315-321.
  • [12] Barsanti, L., Gualtieri, P. (2014). Algae: Anatomy, Biochemistry, and Biotechnology. Taylor & Francis, Boca Raton.
  • [13] Lewin, R., Andersen, R. (2019). Algea. In: Encyclopædia Britannica.
  • [14] Baweja, P., Sahoo, D. (2015). Classification of Algae. In: The Algae World Cellular Origin. In Life in Extreme Habitats and Astrobiology, Edited by D. Sahoo, J. Seckbach, Springer, Dordrecht, pp. 31–55.
  • [15] Cebe, A.S. (2010). Alglerin genel özellikleri, kullanım alanları ve eczacılıktaki önemi. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 39(3), 237–264.
  • [16] Oğur, S. (2016). Kurutulmuş alglerin besin değeri ve gıda olarak kullanımı. Su Ürünleri Dergisi, 33(1), 67-79.
  • [17] Borowitzka, M.A. (1998). Algae As Food. In Microbiology of Fermented Foods, Edited by B.J.B. Wood, Springer, Boston.
  • [18] Edwards, M. (2010). Algae History and Politics, Cambridge University Press, Cambridge. pp. 205.
  • [19] Koyande, A.K., Chew, K.W., Rambabu, K., Tao, Y., Chu, D.T., Show, P.L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16–24.
  • [20] Bixler, H.J., Porse, H. (2011). A decade of change in the seaweed hydrocolloids industry. Journal of Applied Phycology, 23, 321-335.
  • [21] İlter, I., Akyıl, S., Koç, M., Kaymak-Ertekin, F. (2017). Alglerden elde edilen ve gıdalarda doğal renklendirici olarak kullanılan pigmentler ve fonksiyonel özellikleri. Türk Tarım-Gıda Bilim ve Teknoloji Dergisi, 5(12), 1508-1515.
  • [22] Katırcıoğlu, H., Aksöz, N. (2003). Tek hücre proteini. Orlab On-Line Mikrobiyoloji Dergisi, 1(8), 34-49.
  • [23] Becker, E.W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207-210.
  • [24] Khan, Z., Bhadouria, P., Bisen, P.S. (2005). Nutritional and therapeutic potential of Spirulina. Current Pharmaceutical Biotechnology, 6(5), 373-379.
  • [25] Masojídek, J., Torzillo, G. (2014). Mass cultivation of freshwater microalgae. Reference Module in Earth Systems and Environmental Sciences, 2014, 1-13.
  • [26] Bleakley, S., Hayes, M. (2017). Algal proteins: extraction, application, and challenges concerning production. Foods, 6(5), 33.
  • [27] Habib, M.A.B. (2008). Review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. Food and agriculture organization of the united nations.
  • [28] Eleren, S.Ç., Öner, B. (2019). Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: mikroalgler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 304-319.
  • [29] Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87-96.
  • [30] Geada, P., Moreira, C., Silva, M., Nunes, R., Madureira, L., Rocha, C.M., Teixeira, J.A. (2021). Algal proteins: Production strategies and nutritional and functional properties. Bioresource Technology, 332, 125125.
  • [31] O’Connor, J., Garcia-Vaquero, M., Meaney, S., Tiwari, B.K. (2022). Bioactive peptides from algae: Traditional and novel generation strategies, structure-function relationships, and bioinformatics as predictive tools for bioactivity. Marine Drugs, 20(5), 317.
  • [32] Yen, H.W., Hu, I.C., Chen, C.Y., Ho, S.H., Lee, D.J., Chang, J.S. (2013). Microalgae-based biorefinery–from biofuels to natural products. Bioresource Technology, 135, 166-174.
  • [33] Darcan, S., Sarıgül, N. (2015). Mikroorganizmalardan tek hücre yağları üretimi. Türk Mikrobiyoloji Cemiyeti Dergisi, 45(2), 55-67.
  • [34] Ziyaei, K., Ataie, Z., Mokhtari, M., Adrah, K., Daneshmehr, M.A. (2022). An insight to the therapeutic potential of algae-derived sulfated polysaccharides and polyunsaturated fatty acids: Focusing on the COVID-19. International Journal of Biological Macromolecules, 209, 244-257.
  • [35] Kent, L. (2009). Çoklu Doymamış Yağ Asitleri Eldesi: Tepki Yüzey Metodolojisi İle Optimizasyonu. Doktora tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul, pp. 10-50.
  • [36] Akyıl, S., İlter, I., Koç, M., Kaymak-Ertekin, F. (2016). Alglerden elde edilen yüksek değerlikli bileşiklerin biyoaktif/biyolojik uygulama alanları. Akademik Gıda, 14(4), 418-423.
  • [37] Mishra G. (2015) Polyunsaturated Fatty Acids from Algae. In The Algae World, Edited by D. Sahoo, J. Seckbach, Springer, Dordrecht, pp. 57-75.
  • [38] Medina, A.R., Grima, E.M., Gime´nez, A.G., Gonza´lez, M.J.I. (1997). Downstream processing of algal polyunsaturated fatty acids. Biotechnology Advances, 16(3), 517-580.
  • [39] Kyle, D.J. (2001). The large-scale production and use of a single-cell oil highly enriched in docosahexaenoic acid. ACS Symposium Series Omega-3 Fatty Acids, 2, 92-107.
  • [40] Bellou, S., Aggelis, G. (2013). Biochemical activitiesin Chlorella sp. and Nannochloropsissalina during lipid and sugar synthesis in a lab-scale open pondsimulating reactor. Journal of Biotechnology, 164(2), 318-329.
  • [41] Makri, A., Bellou, S., Birkou, M., Papatrehas, K., Dolapsakis, N.P., Bokas, D., Papanikolaou, S., Aggelis, G. (2011). Lipid synthesized by micro‐algaegrown in laboratory and industrial‐scale bioreactors. Engineering in Life Sciences, 11(1), 52-58.
  • [42] Cohen, Z., Heimer, Y.M. (1992). Production of Polyunsaturated Fatty Acids (EPA, ARA and GLA) by The Microalgae Porphyridium and Spirulina. In Industrial Applications of Single Cell Oils, Edited by D.J. Kyle, C. Ratledge. CRC Press, New York, pp. 243-273.
  • [43] Volkman, J.K. (2003). Sterols in microorganisms. Applied Microbiology and Biotechnology, 60(5), 495-506.
  • [44] Robertson, R., Guihéneuf, F., Schmid, M., Stengel, D.B., Fitzgerald, G., Ross, P., Stanton, C. (2013). Algae-derived polyunsaturated fatty acids: implications for human health. Polyunsaturated Fatty Acids: Sources, Antioxidant Properties and Health Benefits, 2013, 45-99.
  • [45] Pina-Pérez, M.C., Brück, W., Brück, T., Beyrer, M. (2020). Microalgae as Healthy İngredients for Functional Foods. In The Role of Alternative and İnnovative Food İngredients and Products ın Consumer Wellness, Edited by C.M. Galanakis, Academic Press, New York, pp. 103-137.
  • [46] Rahman, K.M. (2020). Food and High Value Products from Microalgae: Market Opportunities and Challenges. In Microalgae Biotechnology for Food, Health and High Value Products, Springer, Singapore, pp. 3-27.
  • [47] Harwood, J.L. (2019). Algae: critical sources of very long-chain polyunsaturated fatty acids. Biomolecules, 9(11), 708.
  • [48] Chen, W., Li, T., Du, S., Chen, H., Wang, Q. (2023). Microalgal polyunsaturated fatty acids: Hotspots and production techniques. Frontiers in Bioengineering and Biotechnology, 11, 1146881.
  • [49] K. Ahuja, K. Mamtani. (2022). EPA/DHA (omega 3) ingredients market and Share Report 2026. https://www.gminsights.com/industry-analysis/EPA-DHA-omega-3-ingredients-market
  • [50] Van der Voort, M.P., Spruijt, J., Potters, J.I., Elissen, H.J.H. (2017). Socio-Economic Assessment of Algae-Based PUFA Production. The Value Chain from Microalgae to PUFA Chain, Project no: 613303.
  • [51] Ansorena, D., Astiasarán, I. (2013). Development Of Nutraceuticals Containing Marine Algae Oils. In Functional Ingredients from Algae for Foods and Nutraceuticals, Edited by H.D. González, Woodhead Publishing, Philadelphia, pp. 634-657.
  • [52] DSM. (2021). Nutritional Lipids. https://www.dsm.com/markets/humannutrition/en/products/ nutritional-lipids.html, Mart 2021.
  • [53] Harris, R.P. (2006). Omega 3 fatty acids. Novinka Books, New York, pp. 17.
  • [54] Kraan, S. (2012). Algal Polysaccharides, Novel Applications and Outlook. In Carbohydrates-Comprehensive Studies on Glycobiology and Glycotechnology, Edited by C. Chang, InTech, Rijeka, pp. 65-80.
  • [55] Mišurcováa, L., Orsavováb, J., Ambrožováa, J.V. (2014). Algal Polysaccharides and Health. In Polysaccharides: Bioactivity And Biotechnology, Edited by K.G. Ramawat, J. Mérillon, Springer, Cham, pp. 95.
  • [56] Campo, V.L., Kawano, D.F., da Silva Jr, D.B., Carvalho, I. (2009). Carrageenans: biological properties, chemical modifications and structural analysis–A review. Carbohydrate polymers, 77(2), 167-180.
  • [57] Ak, İ. (2015). Sucul ortamın ekonomik bitkileri; makro algler. Dünya Gıda Dergisi, 12, 88-97.
  • [58] Pegg, A.M. (2012). The Application of Natural Hydrocolloids to Foods and Beverages. In Natural Food Additives, İngredients and Flavourings, Woodhead Publishing, Cambridge, pp. 175-196.
  • [59] McHugh, D.J. (2003). A guide to the seaweed industry. FAO Fish Technology, 441, 1-105.
  • [60] Draget, K.I., Smidsrød, O., Skjåk‐Bræk, G. (2005). Alginates from algae. Biopolymers Online: Biology, Chemistry, Biotechnology, Applications, 6, 22-45.
  • [61] Draget, K.I. (2009). Alginates. In Handbook of Hydrocolloids, Edited by G.O. Phillips, P.A. Williams, CRC press, Boca Raton, pp. 53-64.
  • [62] Gotteland, M., Riveros, K., Gasaly, N., Carcamo, C., Magne, F., Liabeuf, G., Beattie, A., Rosenfeld, S. (2020). The pros and cons of using algal polysaccharides as prebiotics. Frontiers in Nutrition, 7, 163-169.
  • [63] Patel, A.K., Vadrale, A.P., Singhania, R.R., Michaud, P., Pandey, A., Chen, S.J., Dong, C.D. (2022). Algal polysaccharides: current status and future prospects. Phytochemistry Reviews, 1-30.
  • [64] Mandal, S., Nagi, G.K., Corcoran, A.A., Agrawal, R., Dubey, M., Hunt, R.W. (2022). Algal polysaccharides for 3D printing: A review. Carbohydrate Polymers, 120267.
  • [65] Thiviya, P., Gamage, A., Liyanapathiranage, A., Makehelwala, M., Dassanayake, R. S., Manamperi, A., Madhujith, T. (2022). Algal polysaccharides: Structure, preparation and applications in food packaging. Food Chemistry, 134903.
  • [66] Erdal, P., Ökmen, G. (2013). Gıdalarda kullanılan mikrobiyal kaynaklı pigmentler. Türk Bilimsel Derlemeler Dergisi, 6(2), 56-68.
  • [67] Alam, T., Najam, L., Al-Harrasi, A. (2018). Extraction of natural pigments from marine algae. Journal of Agricultural and Marine Sciences, 23(1), 81-91.
  • [68] Beutner, S., Bloedorn, B., Frixel, S., Hernández-Blanco, I., Hoffmann, T., Martin, H.D., Schülke, I. (2001). Quantitative effect of antioxidant properties of natural colorants and phytochemicals: carotenoids, flavonoids, phenols and indigoids. Journal of the Science of Food and Agriculture, 81(6), 559-568.
  • [69] Dufossé, L., Galaup, P., Yaron, A., Arad, S.M., Blanc, P., Murthy, K.N.C., Ravishankar, G.A. (2005). Microorganisms and microalgae as a source of pigment for food use: a scientific oddity or an industrial reality?. Trends in Food Science & Technology, 16(9), 389-406.
  • [70] Prasanna, R., Sood, A., Suresh, A., Nayak, S., Kaushik, B. (2007). Alg pigmentlerinin biyoloji ve endüstrideki potansiyelleri ve uygulamaları. Acta Botanica Hungarica, 49(2),131-156.
  • [71] Çelikel, N., Kınık, Ö., Gönç, S., Kavas, G. (2006). Mikroalglerin gıdalarda renk verici madde (pigment) kaynağı olarak kullanımı. Türkiye 9. Gıda Kongresi, Mayıs 24-26, 2006, Bolu, Türkiye, Bildiri Kitabı, pp. 447-450.
  • [72] Dring, M.J. (1998). The Biology of Marine Plants. Cambridge University Press, Cambridge, pp. 43-76.
  • [73] da Costa Cardoso, L.A., Kanno, K.Y.F., Karp, S.G. (2017). Microbial production of carotenoids A review. African Journal of Biotechnology, 16(4), 139-146.
  • [74] Hu, I.C. (2019). Production of Potential Coproducts from Microalgae. In Biofuels from Algae. Elsevier, New York, pp. 345-358.
  • [75] Lorenz, R.T., Cysewski, G.R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 18(4), 160-167.
  • [76] Santiago-Santos, M.C., Ponce-Noyola, T., Olvera-Ramı́rez, R., Ortega-López, J., Cañizares-Villanueva, R.O. (2004). Extraction and purification of phycocyanin from Calothrix sp.. Process Biochemistry, 39(12), 2047-2052.
  • [77] Buscemi, S., Corleo, D., Di Pace, F., Petroni, M. L., Satriano, A., Marchesini, G. (2018). The effect of lutein on eye and extra-eye health. Nutrient, 10(9), 13-21.
  • [78] Zhang, H., Tang, Y., Zhang, Y., Zhang, S., Qu, J., Wang, X., Liu, Z. (2015). Fucoxanthin: A promising medicinal and nutritional ingredient. Evidence-Based Complementary and Alternative Medicine, 2015, 1-10.
  • [79] Osório, C., Machado, S., Peixoto, J., Bessada, S., Pimentel, F.B.C, Alves, R., Oliveira, M.B.P.P. (2020). Pigments content (Chlorophylls, fucoxanthin and phycobiliproteins) of different commercial dried algae. Separations, 7(2), 33.
  • [80] Patel, A.K., Albarico, F.P.J.B., Perumal, P.K., Vadrale, A.P., Nian, C.T., Chau, H.T.B., ... Singhania, R.R. (2022). Algae as an emerging source of bioactive pigments. Bioresource Technology, 351, 126910.
  • [81] Scheer, H. (2013). Chlorophylls and Carotenoids. In Encyclopedia of Biological Chemistry, Edited by W.J. Lennarz, M.D. Lane, Academic Press, Oxford.
  • [82] Pereira, R., Yarish, C. (2009). Mass Production of Marine Macroalgae. In Encyclopedia Of Ecology and Environmental Management, Edited by P.P. Calow, John Wiley & Sons, New York, pp. 2236-2247.
  • [83] Fung, A., Hamid, N., Lu, J. (2013). Fucoxanthin content and antioxidant properties of Undaria pinnatifida. Food Chemistry, 136(2), 1055-1062.
  • [84] Ambati, R.R., Gogisetty, D., Aswathanarayana, R.G., Ravi, S., Bikkina, P.N., Bo, L., Yuepeng, S. (2019). Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Critical Reviews İn Food Science And Nutrition, 59(12), 1880-1902.
  • [85] Cikoš, A.M., Šubarić, D., Roje, M., Babić, J., Jerković, I., Jokić, S. (2022). Recent advances on macroalgal pigments and their biological activities (2016–2021). Algal Research, 65, 102748.
  • [86] Hazra, S., Ghosh, S., Hazra, B. (2017). Phytochemicals with Antileishmanial Activity: Prospective Drug Targets. In Studies in Natural Products Chemistry, Edited by A. Rahman, Elsevier, Amsterdam, pp. 303-336.
  • [87] Guedes, A.C., Amaro, H.M., Sousa-Pinto, I., Malcata, F.X. (2019). Algal spent biomass—A pool of applications. In Biofuels from algae, Edited by A. Pandey, Elsevier, Amsterdam, pp. 397-433.
  • [88] Leblond, J.D., Vandergrift, S.L. (2022). Sterols of the ‘dinotom’Durinskia baltica (Dinophyceae) are of dinoflagellate origin. Phycological Research, 70(1), 35-41.
  • [89] Kim, S.K., Van Ta, Q. (2011). Potential Beneficial Effects of Marine Algal Sterols on Human Health. In Advances in Food and Nutrition Research, Edited by S.L. Taylor, Academic Press, Burlington, pp. 191-198.
  • [90] Hannan, M.A., Sohag, A.A.M., Dash, R., Haque, M.N., Mohibbullah, M., Oktaviani, D.F., Moon, I.S. (2020). Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine, 69, 153-201.
  • [91] Zhang, R., Han, Y., McClements, D. J., Xu, D., Chen, S. (2022). Production, characterization, delivery, and cholesterol-lowering mechanism of phytosterols: a review. Journal of agricultural and food chemistry, 70(8), 2483-2494.
  • [92] Luo, X., Su, P., Zhang, W. (2015). Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Marine Drugs, 13(7), 4231-4254.
  • [93] Klein, B., Davis, R. (2023). Algal Biomass Production via Open Pond Algae Farm Cultivation: 2022 State of Technology and Future Research (No. NREL/TP-5100-85661). National Renewable Energy Laboratory (NREL), Golden, CO (United States).
  • [94] Lopes, G., Sousa, C., Valentao, P., Andrade, P.B. (2013). Sterols in Algae and Health. In Bioactive Compounds from Marine Foods, Edited by B. Hernandez-Ledesma, M. Herrero, John Wiley, Chichester, pp.173-191.
  • [95] Fernandes, P., Cabral, J.M.S. (2007). Phytosterols: applications and recovery methods. Bioresource Technology, 98(12), 2335-2350.
  • [96] Randhir, A., Laird, D.W., Maker, G., Trengove, R., Moheimani, N.R. (2020). Microalgae: a potential sustainable commercial source of sterols. Algal Research, 46, 101772.
  • [97] Combs, G.F., McClung, J.P. (2017). The Vitamins: Fundamental Aspects İn Nutrition and Health. Academic Press, Amsterdam.
  • [98] Mason, J.B. (2007). Vitamins, trace minerals, and other micronutrients. Cecil Textbook of Medicine 23, 1626-1639.
  • [99] Tang, G., Suter, P.M. (2011). Vitamin A, nutrition, and health values of algae: Spirulina, Chlorella, and Dunaliella. Journal of Pharmacy and Nutrition Sciences, 1(2), 111-118.
  • [100] Priyadarshani, I., Rath, B. (2012). Commercial and industrial applications of micro algae–A review. Journal of Algal Biomass Utilization, 3(4), 89-100.
  • [101] Uma, V. S., Usmani, Z., Sharma, M., Diwan, D., Sharma, M., Guo, M., .Gupta, V. K. (2022). Valorisation of algal biomass to value-added metabolites: Emerging trends and opportunities. Phytochemistry Reviews, 1-26.
  • [102] Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith, A.G., Camire, M.E, Brawley, S.H. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29(2), 949-982.
  • [103] Santhakumaran, P., Ayyappan, S.M., Ray, J. G. (2020). Nutraceutical applications of twenty-five species of rapid-growing green-microalgae as indicated by their antibacterial, antioxidant and mineral content. Algal Research, 47, 101878.
  • [104] Andrade, L.M., Andrade, C., Dias, M., Nascimento, C., Mendes, M. (2018). Chlorella and Spirulina microalgae as sources of functional foods. Nutraceuticals, and Food Supplements, 6(1), 45-58.