Sıcak Hava ile Kurutma Sırasında Domateslerde Antioksidan Aktivite ve Renk Bozulmasının Kinetiği

Antioksidan aktivite (AA) ve renk bozulması, 0.2 m s-1 hava akış hızında, %20 bağıl nemde ve beş sıcaklıkta (60, 70, 80, 90 ve 100°C) bir kabin tipi kurutucuda çeyrek dilimler şeklinde kesilmiş domateslerde sıcak havayla kurutma sırasında incelenmiştir. Toplam fenolik madde miktarı (TPC), FRAP ve DPPH deneyleri ile belirlenen taze domateslerin AA değerleri sırasıyla 85.3 mg GAE, 26.2 µmol TE ve 31.3 µmol TE/100g yaş madde olarak hesaplanmıştır. Artan kurutma sıcaklığı ile domateslerin Hunter Lab renk değerlerinde, a/b oranında ve AA değerlerinde azalma meydana gelmiştir. Sıcak hava ile kurutma sırasında, domateslerin AA ve renk değerlerinin bozunması birinci dereceden reaksiyon modeline uyumlu olduğu belirlenmiştir. TPC, FRAP ve DPPH analizleri ile belirlenen AA bozunması için aktivasyon enerjisi değerleri sırasıyla 24.36, 22.91 ve 23.67 kJ/mol olarak hesaplanmıştır. Sıcak hava ile kurutma sırasında domateslerin TPC, DPPH ve FRAP değerleri ile likopen ve β-karoten içerikleri arasında yüksek korelasyonlar bulunmuştur. Bozunma kinetik verileri, renk değerlerinin ve domates AA'nın kuruma sıcaklığına duyarlı olduğunu ortaya çıkarmıştır.

Kinetics of Antioxidant Activity and Color Degradation in Tomatoes during Hot Air Drying

The antioxidant activity (AA) and color degradation were monitored in tomato quarters (Rio Grande) during hot air drying in a cabinet drier at five temperatures (60, 70, 80, 90 and 100°C) at an airflow rate of 0.2 m/s and 20% relative humidity. AA values of fresh tomatoes determined by total phenolic content (TPC), FRAP and DPPH assays were 85.3 mg GAE, 26.2 µmol TE and 31.3 µmol TE/100g dm, respectively. Increasing drying temperature resulted in a reduction in Hunter Lab and a/b color values of tomatoes as well as their AA values. During hot air drying, the degradation of AA and color values of tomatoes followed a first-order reaction. Activation energy values for AA degradation determined by TPC, FRAP and DPPH assays were 24.36, 22.91 and 23.67 kJ/mol, respectively. High correlations were found among the TPC, DPPH and FRAP values and lycopene and β-carotene contents of tomatoes during hot air drying. Degradation kinetic data revealed that color values and tomatoes AA are susceptible to drying temperature.

___

  • [1] FAO, http://faostat3.fao.org/browse/Q/QC/E. Accessed 15 October 2016.
  • [2] Slimestad, R., Verheul, M. (2009). Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum mill.) cultivars. Journal of the Science of Food and Agriculture, 89, 1255-1270.
  • [3] Veillet, S., Busch, J., Savage, G. (2009). Acceptability and antioxidant properties of a semi-dried and smoked tomato product. Journal of Food, Agriculture and Environment 7(2), 70-75.
  • [4] Halliwell, B. (2000). Why and how should we measure oxidative DNA damage in nutritional studies? How far have we come? The American Journal of Clinical Nutrition 72(5), 1082-1087.
  • [5] Gould, W. A. (1983). Tomato production, processing, and quality evaluation. The AVI Publishing Company Inc., Westport, USA.
  • [6] Pfander, H. (1992). Carotenoids, In: Methods in Enzymology, ed. By Packer L., Elsevier Science Publishing, San Diego, United States, pp. 3-13.
  • [7] Ellis, R. J. (1979). The Plastids: Their Chemistry, Structure, Growth and Inheritance. Trends in Biochemical Sciences, 4 p. N305.
  • [8] Durance, T.D., Wang, J.H. (2002). Energy consumption, density, and rehydration rate of vacuum microwave and hot‐air convection dehydrated tomatoes. Journal of Food Science, 67(6), 2212-2216.
  • [9] Bazyma, L.A., Guskov, V.P., Basteev, A.V., Lyashenko, A.M., Lyakhno, V., Kutovoy, V.A. (2006). The investigation of low temperature vacuum drying processes of agricultural materials. Journal of Food Engineering, 74(3), 410-415.
  • [10] Giri, S. K., Prasad, S. (2007). Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. Journal of Food Engineering, 78(2), 512-521.
  • [11] Giovanelli, G., Zanoni, B., Lavelli, V., Nani, R. (2002). Water sorption, drying and antioxidant properties of dried tomato products. Journal of Food Engineering, 52(2), 135-141.
  • [12] Chang, C.H., Liu, Y.C. (2007). Study on lycopene and antioxidant contents variations in tomatoes under air‐drying process. Journal of Food Science, 72(9), 532-540.
  • [13] Preedy, V.R. (2012). Vitamin A and carotenoids: Chemistry, analysis, function and effects”, Royal Society of Chemistry Publishing, Cambridge, United Kingdom.
  • [14] Zanoni, B., Peri, C., Nani, R., Lavelli, V. (1998). Oxidative heat damage of tomato halves as affected by drying. Food Research International, 31(5), 395-401.
  • [15] Kerkhofs, N.S., Lister, C.E., Savage, G.P. (2005). Change in colour and antioxidant content of tomato cultivars following forced-air drying. Plant Foods for Human Nutrition, 60(3), 117-121.
  • [16] Shi, J., Le Maguer, M., Kakuda, Y., Liptay, A., Niekamp, F. (1999). Lycopene degradation and isomerization in tomato dehydration. Food Research International, 32(1), 15-21.
  • [17] Demiray, E., Tulek, Y., Yilmaz, Y. (2013). Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. LWT-Food Science and Technology, 50(1), 172-176.
  • [18] Toor, R.K., Savage, G.P. (2006). Effect of semi-drying on the antioxidant components of tomatoes. Food Chemistry, 94(1), 90-97.
  • [19] AOAC, (1990). Official Methods of Analysis, 15th Ed. Washington, DC: Association of Official Analytical Chemists.
  • [20] Goula, A.M., Adamopoulos, K.G., Chatzitakis, P.C., Nikas, V.A. (2006). Prediction of lycopene degradation during a drying process of tomato pulp. Journal of Food Engineering, 74(1), 37-46.
  • [21] Sharma, S.K., Le Maguer, M. (1996). Kinetics of lycopene degradation in tomato pulp solids under different processing and storage conditions. Food Research International, 29(3-4), 309-315.
  • [22] Min, S., Jin, Z.T., Zhang, Q.H. (2003). Commercial scale pulsed electric field processing of tomato juice. Journal of Agricultural and Food Chemistry, 51(11), 3338-3344.
  • [23] Lin, C.H., Chen, B.H. (2005). Stability of carotenoids in tomato juice during processing. European Food Research and Technology, 221(3), 274-280.
  • [24] Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent” ed. By Packer L., Elsevier Science Publishing, San Diego, United States, pp. 152-178.
  • [25] Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19(6-7), 669-675.
  • [26] SAS Institute, (2002). SAS User’s Guide: Statistics, Version 9.00. Cary, NC: SAS Institute.
  • [27] Lee, M.T., Chen, B.H. (2001). Separation of lycopene and its cis isomers by liquid chromatography. Chromatographia, 54(9), 613-617.
  • [28] de Abreu, W.C., Barcelos, M.D.F.P., de Barros Vilas Boas, E.V., da Silva, E.P. (2014). Total antioxidant activity of dried tomatoes marketed in Brazil. International Journal of Food properties, 17(3), 639-649.
  • [29] Gümüşay, Ö.A., Borazan, A.A., Ercal, N., Demirkol, O. (2015). Drying effects on the antioxidant properties of tomatoes and ginger. Food Chemistry, 173, 156-162.
  • [30] Akdaş, S., Başlar, M. (2015). Dehydration and degradation kinetics of bioactive compounds for mandarin slices under vacuum and oven drying conditions. Journal of Food Processing and Preservation, 39(6), 1098-1107.
  • [31] Fossen, T., Andersen, O.M. (2006). Chemistry, Biochemistry and Applications: Spectroscopic Techniques Applied to Flavonoids In: Flavonoids eds. Anderson, O.M., Markham, K.R., Taylor & Francis, New York, USA, pp. 37-142.
  • [32] De Bruyn, J. W., Garretsen, F., Kooistra, E. (1971). Variation in taste and chemical composition of the tomato (Lycopersicon esculentum Mill.). Euphytica, 20(2), 214-227.
  • [33] Sahlin, E., Savage, G.P., Lister, C.E. (2004). Investigation of the antioxidant properties of tomatoes after processing. Journal of Food composition and Analysis, 17(5), 635-647.
  • [34] Martínez‐Valverde, I., Periago, M.J., Provan, G., Chesson, A. (2002). Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). Journal of the Science of Food and Agriculture, 82(3), 323-330.
  • [35] Larrosa, M., Espín, J.C., Tomás‐Barberán, F.A. (2003). Antioxidant capacity of tomato juice functionalised with enzymatically synthesised hydroxytyrosol. Journal of the Science of Food and Agriculture, 83(7), 658-666.
  • [36] Powell, Z.D.L.C. (2001). Antioxidant capacity of lycopene-containing foods. International Journal of Food Sciences and Nutrition, 52(2), 143-149.
  • [37] Ishida, B.K., Chapman, M.H. (2004). A comparison of carotenoid content and total antioxidant activity in catsup from several commercial sources in the United States. Journal of Agricultural and Food Chemistry, 52(26), 8017-8020.
  • [38] Le Maguer, M., Shi, J. (2000). Lycopene in tomatoes: chemical and physical properties affected by food processing. Critical Reviews in Food Science and Nutrition, 40(1), 1-42.
  • [39] Krebbers, B., Matser, A.M., Hoogerwerf, S.W., Moezelaar, R., Tomassen, M.M., van den Berg, R.W. (2003). Combined high-pressure and thermal treatments for processing of tomato puree: evaluation of microbial inactivation and quality parameters. Innovative Food Science & Emerging Technologies, 4(4), 377-385.
  • [40] Askari, G. R., Emam‐Djomeh, Z., Tahmasbi, M. (2009). Effect of various drying methods on texture and color of tomato halves. Journal of Texture Studies, 40(4), 371-389.
  • [41] Izli, N., Isik, E. (2015). Color and microstructure properties of tomatoes dried by microwave, convective, and microwave-convective methods. International Journal of Food Properties, 18(2), 241-249.
  • [42] Orikasa, T., Koide, S., Sugawara, H., Watanabe, T., Okada, M., Matsushima, U., Tagawa, A. (2014). Drying kinetics and quality of tomato fruits dehydrated by a vacuum-microwave method. In: XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014), Brisbane, Australia, pp. 375-380.
  • [43] Demiray, E., Tulek, Y. (2020). Color and ascorbic acid degradation kinetics of red pepper (Capsicum annuum L.) slices during vacuum drying. Akademik Gıda, 18(1), 19-26. [44] Arias, R., Lee, T.C., Logendra, L., Janes, H. (2000). Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. Journal of Agricultural and Food Chemistry, 48(5), 1697-1702.
  • [45] Georgé, S., Tourniaire, F., Gautier, H., Goupy, P., Rock, E., Caris-Veyrat, C. (2011). Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chemistry, 124(4), 1603-1611.
  • [46] Hernández, M., Rodríguez, E., Díaz, C. (2007). Free hydroxycinnamic acids, lycopene, and color parameters in tomato cultivars. Journal of Agricultural and Food Chemistry, 55(21), 8604-8615.
  • [47] Ilahy, R., Hdider, C., Lenucci, M.S., Tlili, I., Dalessandro, G. (2011). Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. Journal of Food Composition and Analysis, 24(4-5), 588-595.
  • [48] Kim, S.J., Matsushita, Y., Fukushima, K., Aoki, D., Yagami, S., Yuk, H.G., Lee, S.C. (2014). Antioxidant activity of a hydrothermal extract from watermelons. LWT-Food Science and Technology, 59(1), 361-368.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi