Probiyotik Bakterilerin Yüksek Sıcaklık Stresine Karşı Adaptasyon Mekanizmalar

Probiyotik ürünlerden beklenen yararların sağlanabilmesi için üründe raf ömrü sonuna kadar belirli sayıda canlı probiyotik bakteri bulunması gerekmektedir. Bu nedenle probiyotik ürünlerin üretiminde kullanılacak probiyotik bakterilerin canlılığının yüksek düzeyde olması gerekmektedir. Gıda endüstrisinde kullanılan probiyotik bakteriler genellikle sıvı, toz ve dondurulmuş formda bulunmaktadır. Toz formun üretiminde kullanılan yöntemlerden biri de termal kurutmadır. Termal kurutma yöntemi, fermente süt ürünlerinin kurutulmasında ve probiyotik bakterilerin mikroenkapsülasyonda da kullanılmaktadır. Ancak, termal kurutmada bakteriler yüksek sıcaklık stresi, ozmotik basınç stresi, oksidatif stres gibi farklı stres koşullarına maruz kalmaktadır. Probiyotik bakterileri yüksek sıcaklık stresinden korumak için geliştirilen yöntemlerden biri söz konusu bakterilerin stres faktörüne adaptasyonunun sağlanmasıdır. Probiyotik bakteriler yüksek sıcaklık stresine karşı hücrelerinde meydana gelen protein ve proteaz sentezindeki değişim ile adapte olabilmektedir

Adaptation Mechanisms of Probiotic Bacteria to High Temperature Stress

To provide the expected benefits of probiotic products, it is necessary that probiotic bacteria maintain the adequate number of viable cells during the shelf life in the product. Therefore, probiotic bacteria to be used in the manufacturing of probiotic products must have a high level of viability. A probiotic bacterium used in the food industry has been usually in liquid, powder or frozen form. Thermal drying is a manufacture method of powder form, and it also uses drying of the fermented milk products and microencapsulation of probiotic bacteria. However, probiotic bacteria may be exposed to different stress conditions like high temperature, osmotic stress, oxidative stress etc. during thermal drying. Adaptation of probiotic bacteria to stress factors has been developed to protect probiotic bacteria against high temperature stress. Adaptation of probiotic bacteria to high temperature stress takes place with chancing protein and protease synthesis in their cell

___

  • [1] Şener, A., 2009. Serbest ve Mikroenkapsüle Probiyotik Bakterilerin Ticari Dondurma Üretiminde Kullanılabilirliği Üzerine Bir Araştırma. Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Türkiye, 156 s.
  • [2] Turgut, T., 2006. Bazı Probiyotik Bakterilerin Dondurma Üretiminde Kullanım İmkânları. Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, Türkiye, 168 s.
  • [3] Gürsoy, O., Kınık, Ö., Gönen, İ., 2005. Probiyotikler ve gastrointestinal sağlığa etkileri. Türk Mikrobiyoloji Cemiyeti Dergisi 35: 136-148.
  • [4] Çomak, E.M., 2010. Farklı İnkübasyon Sıcaklıkları ve Sonlandırma pH’larının Acidophiluslu Yoğurdun Fizikokimyasal, Mikrobiyolojik, Duyusal ve Probiyotik Özellikleri Üzerine Etkisi. Yüksek Lisans Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Antalya, Türkiye, 124 s.
  • [5] Anonim., 2006. Gıda Maddelerinin Genel Etiketleme ve Beslenme Yönünden Etiketleme Kuralları Tebliği. Tebliğ No: 2006/34. T.C. Resmi Gazete 07.07.2006 tarih 26221 sayı. Başbakanlık Mevzuatı Geliştirme ve Yayın Genel Müdürlüğü, Ankara.
  • [6] Anonim., 2012. Türk Gıda Kodeksi Etiketleme Yönetmeliği. T.C. Resmi Gazete 11.02.2012 tarih 28201 sayı. Başbakanlık Mevzuatı Geliştirme ve Yayın Genel Müdürlüğü, Ankara.
  • [7] Ying, D., Sun, J., Sanguansri, L., Weerakkody, R., Augustin, M.A., 2012. Enhanced survival of spraydried microencapsulated Lactobacillus rhamnosus GG in the presence of glucose. Journal of Food Engineering 109: 597-602.
  • [8] Corcoran, B.M., Stanton, C., Fitzgerald, G.F., Ross R.P., 2008. Life under stress: The probiotic stress response and how it may be manipulated. Current Pharmaceutical Design 14: 1382-1399.
  • [9] Üçüncü, M., 2010. Süt Mamulleri Teknolojisi. Meta Basım Matbaacılık. İzmir, Türkiye, 571s.
  • [10] Paéz, R., Lavari, L., Vinderola, G., Audero, G., Cuatrin, A., Zaritzky, N., Reinheimer, J., 2012. Effect of heat treatment and spray drying on lactobacilli viability and resistance to simulated gastrointestinal digestion. Food Research International 48: 748-754.
  • [11] Nale, Z., 2013. Prebiyotik Eklenmiş Kefirin Püskürterek Kurutulması ve Ürünün Kalite Özelliklerinin Belirlenmesi. Yüksek Lisans Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Antalya, Türkiye, 120s.
  • [12] Lian, W.C., Hsiao, H.C., Cho, C.C., 2002. Survival of bifidobacteria after spray-drying. International Journal of Food Microbiology 74: 79-86.
  • [13] Corcoran, B.M., Ross, R.P., Fitzgerald, G.F., Stanton, C., 2004. Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. Journal of Applied Microbiology 96: 1024-1039.
  • [14] Chavez, B.E., Ledeboer, A.M., 2007. Drying of probiotics: Optimization of formulation and process to enhance storage survival. Drying Technology: An International Journal 25: 1193-1201.
  • [15] Desmond, C., Stanton, C., Fitzgerald, G.F, Collins, K., Ross, R.P., 2001. Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. International Dairy Journal 12: 183-190.
  • [16] Fu, N., Chen, X.D., 2011. Towards a maximal cell survival in convective thermal drying processes. Food Research International 44: 1127-1149.
  • [17] Dikici, A., 2009. Çevresel stres faktörlerine karşı bakteriyel adaptasyonlar ve mekanizmaları. Gıda Teknolojileri Elektronik Dergisi 4(3): 59-68.
  • [18] Ergin, F., Göçer, E.M.Ç., Aşcı, A.A., Küçükçetin A., 2012. Probiyotik bakterilerin düşük sıcaklık stresine adaptasyonu. Akademik Gıda 10(4): 65-69.
  • [19] Streit, F., Corrieu, G., B´eal, C., 2007. Acidification improves cryotolerance of Lactobacillus delbrueckii subsp. bulgaricus CFL1. Journal of Biotechnology 128: 659-667.
  • [20] Gündüz, A., 2010. Model Sistemlerde Laktik Asit Bakterileri (Lactobacillus bulgaricus ve Lactococcus lactis Üzerine Stres Faktörlerinin Etkisinin Belirlenmesi. Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya, Türkiye, 94s.
  • [21] Serrazanetti, D.I., Guerzoni, M.E., Corsetti, A., Vogel, R., 2009. Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiology 26: 700-711.
  • [22] Smith, W.M., Dykes, G.A., Soomro, A.H., Turner, M.S., 2013. Molecular mechanisms of stress resistance in Lactococcus lactis. http://www.formatex.info/microbiology2/1106- 1118.pdf (Erişim tarihi: 03.02.2013).
  • [23] Anonim,2013.http://hbogm.meb.gov.tr/modulerprogr amlar/kursprogramlari/gida/moduller/proteinlerin_oz ellikleri.pdf (Erişim tarihi: 03.02.2013).
  • [24] Sugimoto, S., Al-Mahin, A., Sonomoto, K., 2008. Molecular chaperones in lactic acid bacteria: Physiological consequences and biochemical properties. Journal of Bioscience and Bioengineering 106(4): 324-336.
  • [25] Varmanen, P., Savijoki, K., 2011. Responses of lactic acid bacteria to heat stress. Food Microbiology and Food Safety, Tsakalidou, E., (ed) and Papadimitriou, K., (ed). Springer, US, pp 55- 66.
  • [26] Wei-Yin NG, E., 2009. Effect of Starter Cultures on Lactobacillus acidophilus Survival and Gene Expression in Yogurt. M. Sc. Thesis, Faculty of California Polytechnic State University, San Luis Obispo, 120 p.
  • [27] Han, M.J., Yun, H., Lee, S.Y., 2008. Microbial small heat shock proteins and their use in biotechnology. Biotechnology Advances 26: 591-609.
  • [28] De Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S., Maguin, E., 2002. Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek 82: 187-216.
  • [29] De Angelis, M., Gobbetti, M., 2004. Environmental stress responses in Lactobacillus: A review. Proteomics 4: 106-122.
  • [30] Girgis, H.S., Smith J., Luchansky, J.B., Klaenhammer, T.R., 2003. Stress Adaptations of Lactic Acid Bacteria. In: Yousef, A.E., (ed) and Juneja, V.K., (ed), Microbial stress adaptation and food safety. CRC Press, Boca Raton, Florida, pp 159-211.
  • [31] Suokko, A., 2008. The Stress Responses of Probiotic Lactobacilli and a Bifidobacterium with Special Emphasis on Clp Family Proteins. Academic Dissertation, Faculty of Veterinary Medicine of the University of Helsinki, Finland, 55p.
  • [32] Bukau, B., Horwich, A.L., 1998. The Hsp70 and Hsp60 review chaperone machines. Cell 92: 351- 366.
  • [33] Mayer, M.P., Bukau, B., 2005. Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular and Molecular Life Sciences 62: 670-684.
  • [34] Al-Mahin, A., Sugimoto, S., Higashi, C., Matsumoto, S., Sonomoto, K., 2010. Improvement of multiplestress tolerance and lactic acid production in Lactococcus lactis NZ9000 under conditions of thermal stress by heterologous expression of Escherichia coli dnaK. Applied and Environmental Microbiology 76(13): 4277-4285.
  • [35] Hu, B., Mayer, M.P., Tomita, M., 2013. Hsp70‑mediated protein refolding in e‑cell. http://www.ncbi.nlm.nih.gov/books/NBK6503/ (Erişim tarihi: 03.02.2013).
  • [36] Liao, Q., Hang, X., Liu, X., Pan, J., Zhang, H., Yang, H., 2010. The influence of pH on heat stress response by probiotic Lactobacillus plantarum LPOnlly. Annals of Microbiology 60: 341-348.
  • [37] Gouesbet, G., Jan, G., Boyaval, P., 2002. Twodimensional electrophoresis study of Lactobacillus delbrueckii subsp. bulgaricus thermotolerance. Applied and Environmental Microbiology 68(3): 1055-1063.
  • [38] Falke, S., Fisher, M.T., Gogol, E.P., 2001. Structural changes in GroEL effected by binding a denatured protein substrate. Journal of Molecular Biology 308: 569-577
  • [39] Richter, K., Haslbeck, M., Buchner, J., 2010. The heat shock response: Life on the verge of death. Molecular Cell 40(2): 253-266.
  • [40] Weissman, J.S., Rye, H.S., Fenton, W.A., Beechem, J.M., Horwich, A.L., 1996.
  • Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84: 481-490.
  • [41] Vorob’eva, L.A., 2004. Stressors, stress reactions, and survival of bacteria: A review. Applied Biochemistry and Microbiology 40(3): 217-224.
  • [42] Prasad, J., McJarrow, P., Gopal, P., 2003. Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Applied and Environmental Microbiology 69(2): 917-925.
  • [43] Desmond, C., Fitzgerald, G.F., Stanton, C., Ross, R.P., 2004. Improved stress tolerance of GroESLoverproducing Lactococcus lactis and probiotic Lactobacillus paracasei NFBC 338. Applied and Environmental Microbiology 70(10): 5929-5936.
  • [44] Capozzi, V., Weidmann, S., Fiocco, D., Rieu, A., Hols, P., Guzzo, J., Spano, G., 2011. Inactivation of a small heat shock protein affects cell morphology and membrane fluidity in Lactobacillus plantarum WCFS1. Research in Microbiology 162: 419-425.
  • [45] Guzzo, J., 2012. Biotechnical applications of small heat shock proteins from bacteria. The International Journal of Biochemistry & Cell Biology 44: 1698- 1705.
  • [46] Nakamoto, H., Vígh, L., 2007. The small heat shock proteins and their clients. Cellular and Molecular Life Sciences 64: 294-306.
  • [47] Acunzo, J., Katsogiannou, M., Rocchi, P., 2012. Small heat shock proteins HSP27 (HspB1), αBcrystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. The International Journal of Biochemistry & Cell Biology 44: 1622-1631.
  • [48] Capozzi, V., Arena, M.P., Crisetti, E., Spano, G., Fiocco, D., 2011. The hsp 16 gene of the probiotic Lactobacillus acidophilus is differently regulated by salt, high temperature and acidic stresses, as revealed by reverse transcription quantitative PCR (qRT-PCR) analysis. International Journal of Molecular Sciences 12: 5390-5405.
  • [49] Kress, W., Maglica, Z., Weber-Ban, E., 2009. Clp chaperone-proteases: Structure and function. Research in Microbiology 160: 618-628.
  • [50] De Angelis, M., Gobbetti, M., 2011. Stress Responses of Lactobacilli. Food Microbiology and Food Safety, Tsakalidou, E., (ed) and Papadimitriou, K., (ed). Springer, US, pp 219-249.
  • [51] Suokko, A., Savijoki, K., Malinen, E., Palva, A., Varmanen, P., 2005. Characterization of a mobile clpL gene from Lactobacillus rhamnosus. Applied and Environmental Microbiology 71(4): 2061-2069.
  • [52] Smeds, A., Varmanen, P., Palva, A., 1998. Molecular characterization of a stress-inducible gene from Lactobacillus helveticus. Journal of Bacteriology 180(23): 6148-6153.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi