Patates, Buğday ve Mısır Nişastasından Laboratuvar Ölçekli Glikoz Şrubu Üretimi İçin Optimizasyon Çalışması

Glikoz Şurubu tercihen mısır nişastasının hidrolizi ile üretilen değerli bir gıda bileşenidir. Bu çalışmada buğday, mısır ve patates nişastalarından küçük ölçekli glikoz şurubu üretim süreci incelenmiştir. Sırasıyla sıvılaştırma ve şekerleştirme için α–amilaz ve amiloglukosidaz kullanılarak iki aşamalı ezimatik hidroliz, nihai ürünün glikoz içeriğine bağlı olarak analiz edildi. Koşulların optimizasyonu, nişasta için farklı başlangıç miktarları, farklı enzim miktarları ve reaksiyon süreleri ile gerçekleştirildi. Başlangıç miktarı %30 olan nişasta bulamaçları, 2 saat boyunca %0.0002 (mL/g, h enzim/a nişasta) α–amilaz ile küçük dekstrinlere hidrolize edildi ve daha sonra 48 saat boyunca %0.0002 (mL/g, h enzim/a nişasta) amiloglukozidaz ile glikoza hidrolize edildi. Bu işlem koşulları ile buğday, mısır ve patates nişastalarından sırasıyla %97.04, 97.27 ve 95.34 dekstroz eşdeğerlerine (DE) ve %84.30, 78.30 ve 82.37 kuru madde değerlerine sahip glikoz şurupları elde edildi. Farklı biyolojik menşeli nişastaların, optimum koşullarda yüksek DE değerine sahip glikoz şurubunun enzimatik üretimi için umut verici hammaddeler olduğu sonucuna varıldı.

An Optimization Study for Laboratory Scale Production of Glucose Syrup from Potato, Wheat and Maize Starch

Glucose syrup is a valuable food ingredient produced by the hydrolysis of starch preferrably from maize. In this study, small-scale production process of glucose syrup from wheat, maize and potato starches was investigated. Two-step ezymatic hydrolysis using α–amylase and amyloglucosidase for liquefaction and saccharification, respectively, was analyzed based on the glucose content of a final product. The optimization of conditions was conducted with different initial amount of starch, different amount of enzymes and reaction time. Starch slurries at 30% were hydrolzed into smaller dextrins by 0.0002% (mL/g, venzyme /wstarch) α–amylase for 2 hours and further hydrolyzed into glucose by 0.0002% (mL/g, venzyme /wstarch) amyloglucosidase for 48 hours optimally. These process conditions yielded glucose syrups with dextrose equivalent (DE) values of 97.04, 97.27 and 95.34% and dry matter content of 84.30, 78.30 and 82.37% from wheat, maize and potato starches, respectively. It was concluded that starch from different biological origins offered promising raw materials for the enzymatic production of glucose syrup wih high DE value at optimum conditions.

___

  • [1] Tester, R.F., Karkalas, J., Qi X. (2004). Starch-composition, fine structure and architecture. Journal of Cereal Science, 39, 151-165.
  • [2] Van der Maarel, M.J.E.C., van der Veen, B., Uitdehaag, J.C.M., Leemhuis, H., Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94, 137-155.
  • [3] Manek, R.V., Kunle, O.O., Emeje, M.O., Builders, P., Rao, G.V.R., Lopez, G.P., Kolling, W.M. (2005). Physical, thermal and sorption profile of starch obtained from Tacca leontopetaloides. Starch/Stärke, 57(2), 55-61.
  • [4] Waterschoot, J., Gomand, S.V., Fierens, E., Delcour, J.A. (2015). Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch/Stärke, 67(1-2), 14-29.
  • [5] Reis, A.V., Guilherme, M.R., Moia, T.A., Mattoso, L.H.C., Muniz, E.C., Tambourgi, E.B. (2008). Synthesis and characterization of a starch-modified hydrogel as potential carrier for drug delivery system. Journal of Polymer Science Part A: Polymer Chemistry, 46(7), 2567-2574.
  • [6] Poomipuk, N., Reungsang, A., Plangklang, P. (2014). Poly-β-hydroxyalkanoates production from cassava starch hydrolysate by Cupriavidus sp. KKU38. International Journal of Biological Macromolecules, 65, 51-64.
  • [7] Duan, G., Xu, H., Sun, C., Qian, Y., Li, Y., Zhou, H., Jiang, X., Shetty, J., Lantero O. (2006). Progress on ethanol production technology-breakthrough of new enzyme technology for producing ethanol from raw starch. Food and Fermentation Industries, 32(7), 65-70.
  • [8] Liu, J.H., Wang, B., Lin, L., Zhang, J.Y., Liu, W.L., Xie, J.H. and Ding, Y.T. (2014). Functional, physicochemical properties and structure of cross‐linked oxidized maize starch. Food Hydrocolloid, 36, 45-52.
  • [9] Xijun, L., Junjie, G., Danli, W., Lin, L., Jiaran, Z. (2014). Effects of protein in wheat flour on retrogradation of wheat starch. Journal of Food Science, 79(8), 1505-1511.
  • [10] Sujka, M., Cieśla, K., Jamroz, J. (2015). Structure and selected functional properties of gamma‐irradiated potato starch. Starch/Stärke, 67(11-12), 1002-1010.
  • [11] Kumar, A., Dash, G.K., Barik, M., Panda, P.A., Lal, M.K., Baig, M.J., Swain, P. (2020). Effect of drought stress on resistant starch content and glycemic index of rice (Oryza sativa L.). Starch/Stärke. 1900229
  • [12] Vithu, P., Dash, S.K., Rayaguru, K., Panda M.K., Nedunchezhiyan M. (2020). Optimization of starch isolation process for sweet potato and characterization of the prepared starch. Food Measure, 14, 1520-1532.
  • [13] Gourilekshmi, S.S., Jyothi, A.N., Sreekumar, J. (2020). Physicochemical and Structural Properties of Starch from Cassava Roots Diffrering in Growing Duration and Ploidy Level. Starch/Stärke, 1900237.
  • [14] Zhu, F. (2014). Structure, physicochemical properties, modifications, and uses of sorghum starch. Comprehensive Reviews in Food Science and Food Safety, 13(4), 597-610.
  • [15] Zhu, F. (2017). Barley Starch: composition, structure, properties, and modifications. Comprehensive Reviews in Food Science and Food Safety, 16(4), 558-579.
  • [16] Lindeboom, N., Chang, P.R., Tyler, R.T. (2004). Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: A review. Starch/Stärke, 56, 89-99.
  • [17] Zhang, X., Feng, J., Wang, H., Zhu, J., Zhong, Y., Liu, L., Xu, S., Zhang, R., Zhang, X., Xue, J., Guo, D. (2018). Bivariate flow cytometric analysis and sorting of different types of maize starch grains. Cytometry Part A, 93(2), 213-221.
  • [18] Mifst, P.H. (2010). Glucose Syrups: Technology and Applications, Wiley-Blackwell.
  • [19] Nebesny, E. (1992). Changes in carbohydrate and molecular structure of dextrins during enzyme liquefaction of starch. Starch/Stärke, 44, 398.
  • [20] Nebesny, E., Rosicka, J., Pierzgalski, T. (1998). Enzymatic hydrolysis of wheat starch into glucose. Starch/ Stärke, 50, 337-341.
  • [21] AOAC (2006). Official methods of analysis of the Association of Analytical Chemists 18th edition, Washington, DC, USA
  • [22] Fitter, J., Herrmann, R., Dencher, N.A., Blume, A., Hauss, T. (2001). Activity and stability of a thermostable alpha-amylase compared to its mesophilic homologue: Mechanisms of thermal adaptation. Biochemistry, 40, 10723-10731.
  • [23] Lane, J.H., Eynon, L. (1923). Determination of reducing sugars by means of Fehling's solution with methylene blue as internal indicator. Journal of the Society of Chemical Industry, 42, 32-36.
  • [24] Eckhoff, S.R., Watson, S.A. (2009). in Starch: Chemistry and Technology, Edited by J. BeMiller, R. Whistler, Academic Press, New York, 373-439.
  • [25] Van Der Borght, A., Goesaert, H., Veraverbeke, W.S., Delcour, J.A. (2005). Fractionation of wheat and wheat flour into starch and gluten: Overview of the main processes and the factors involved. Journal of Cereal Science, 41, 221-237.
  • [26] Grommers, H.E., van der Krogt, D.A. (2009). in Starch: Chemistry and Technology, Edited by J. BeMiller, R. Whistler, Academic Press, New York, 511-539.
  • [27] Schirmer, M., Höchstötter, A., Jekle, M., Arendt, E., Becker, T. (2013). Physicochemical and morphological characterization of different starches with variable amylose/amylopectin ratio. Food Hydrocolloids, 32(1), 52-63.
  • [28] Pozo, C., Rodríguez-Llamazares, S., Bouza, R., Barral, L., Castaño, J., Müller, N., Restrepo, I. (2018). Study of the structural order of native starch granules using combined FTIR and XRD analysis. Journal of Polymer Research, 25, 266.
  • [29] Kızıl, R., Irudayaraj, J., Seetharaman, K. (2002). Characterization of ırradiated starches by using FT-Raman and FTIR spectroscopy. Journal of Agricultural and Food Chemistry, 50, 3912-3918.
  • [30] Amir, R.M., Anjum, F.M., Khan, M.I., Khan, M.R, Pasha, I., Nadeem, M. (2013). Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties. Journal of Food Science and Technology, 50(5), 1018-1023.
  • [31] Singh, N., Singh, J., Kaur, R., Sodhi, N.S., Gill, B.S. (2003). Morphological, thermal and rheological properties of starches from different botanical sources. Food Chemistry, 81, 219-231.
  • [32] Baum, B.R., Bailey, L.G. (1987). A survey of endosperm starch granules in the genus Hodeum: a study using image analytic and numerical taxonomic techniques. Canadian Journal of Botany, 65, 1563-1569.
  • [33] Hoover, R. (2001). Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymers, 45, 253-267.
  • [34] Kaur, A., Singh, N., Ezekiel, R., Sodhi, N.S. (2009). Properties of starches separated from potatoes stored under different conditions. Food Cehmistry, 114, 4, 1396-1404.
  • [35] Franco, C.M.L., Ciacco, C.F., Tavares, D.D.Q. (1988). Studies on the susceptibility of granular cassava and corn starches to enzymatic attack Part II: Study of granular structure of starch. Starch/Starke, 40(1), 29-32.
  • [36] De Cordt, S., Hendrickx, M., Maesmans, G., Tobback, P. (1994). The influence of polyalcohols and carbohydrates on the thermostability of alpha-amylase. Biotechnology and Bioengineering, 43, 107-14.
  • [37] Mitsuiki, S., Mukae, K., Sakai, M., Goto, M., Hayashida, S., Furukawa, K. (2005). Comparative characterization of raw starch hydrolyzing α-amylases from various Bacillus strains. Enzyme and Microbial Technology, 37(4), 410-416.
  • [38] Dutta, T.K., Jana, M., Pahari, P.R., Bhattacharya, T. (2006). The effect of temperature, pH, and salt on amylase in Heliodiaptomus viduus (Gurney) (Crustacea: Copepoda: Calanoida). Turkish Journal of Zoology, 30, 187-195.
  • [39] Zainab, A., Modu, S., Falmata, A.S., Maisaratu (2011), Laboratory scale production of glucose syrup by the enzymatic hydrolysis of starch made from maize, millet and sorghum. Biokemistri, 23(1), 1- 8.
  • [40] Li, C., Fang, D., Li, Z., Gu, Z., Yang, Q., Cheng, L., Hong, Y. (2016). An improved two-step saccharification of high-concentration corn starch slurries by granular starch hydrolyzing enzyme. Industrial Crops and Products, 94, 259-265.
Akademik Gıda-Cover
  • ISSN: 1304-7582
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2003
  • Yayıncı: Sidas Medya Limited Şirketi
Sayıdaki Diğer Makaleler

Soğuk Baskı Yöntemiyle Üretilmiş Greyfurt Çekirdek Yağındaki Acılığın Yıkama/Ekstraksiyon Teknikleriyle Giderilmesi

Ayten DEVİREN, Selçuk OK, Emin YILMAZ

Patates, Buğday ve Mısır Nişastasından Laboratuvar Ölçekli Glikoz Şrubu Üretimi İçin Optimizasyon Çalışması

Emine KAPAR YILMAZ, Ali AKBAYRAK, Ceren BAYRAÇ

Süt İşletmeleri Çalışanlarının El ve Gaita Örneklerinde Astrovirüs, Norovirüs ve Rotavirüs Antijenlerinin Belirlenmesi

Hatice AYDOGAN, Oğuz GÜRSOY, Mehmet KALE

Turunçgil Kabuk ve Yaprak Ekstraktlarının Gıda Kaynaklı Patojen Bakteriler Üzerine Antimikrobiyal Aktivitesi

Gökhan AKARCA, Fatma BAYTAL

Probiyotik Bakteri İçeren Ayranın Fizikokimyasal ve Mikrobiyolojik Özellikleri

Şule Azime YENİÇERİ, Emine Mine ÇOMAK GÖÇER, Ahmet KÜÇÜKÇETİN

Çorum’da Yetişen Kızılcıkların (Cornus mas L.) Morfolojik ve Fiziko-kimyasal Özelliklerinin Değerlendirilmesi

Nihal GÜZEL

Tüketicilerin Ev Ortamında Et Tüketimi Konusundaki Gıda Güvenliği Bilgi, Tutum ve Uygulamaları

Çiğdem MUŞTU, Veli CEYLAN, Mehmet SARIIŞIK

Mikroplastikler ve Gıda Güvenliği

Orhan ATAKAN, Muhammed YÜCEER, Cengiz CANER

Sütlü Bir Tatlı Keşkülün Fizikokimyasal, Tekstürel ve Duyusal Özellikleri Üzerine Depolamanın ve Bazı Hidrokolloid Karışımlarının Etkisi

Selen KADAĞAN, Seher ARSLAN

Baklagiller: Fonksiyonel Özellikleri, Sağlık Etkileri ve Potansiyel Kullanımı

Elif ATALAY, İncilay GÖKBULUT