Kaz Dağları’ndan Toplanan Bazı Bitkilerin Fenolik Asit Kompozisyonlarının Yüksek Performanslı Sıvı Kromatografisi Đle Belirlenmesi

Bu çalışmada Kaz Dağları’ndan toplanan Sideritis trojana, Salvia tomentosa, Origanum vulgare subsp. hirtum, Lavandula stoechas subsp. stoechas, Sideritis athoa, Mentha pulegium, Abies nordmannia subsp. equi-trojani kozalağı, Hypericum perforatum, Achillea nobilis subsp. sipylea ve Mentha spicata bitkilerinin fenolik asit kompozisyonları gallik, protokateşik, p-hidroksibenzoik, vanilik, kafeik, klorojenik, sirinjik, p-kumarik, ferulik, okumarik, rozmarinik ve trans-sinamik asitler belirlenmiştir. Fenolik asit analizleri ters faz HPLC ile gradiyent sistemde, 280 nm dalgaboyunda ve iç standart olarak propilparaben kullanılarak gerçekleştirilmiştir. Origanum vulgare subsp. hirtum ve Salvia tomentosa’nın fenolik asitlerce oldukça zengin oldukları gözlenmiştir. Rozmarinik asit, hem bulunma sıklığı hem de bulunma miktarı bakımından diğer fenolik asitlerden daha fazla tespit edilmiştir. İncelenen bitkiler arasında fenolik asit içeriği bakımından en fakir olan türün, endemik bir bitki olan Abies nordmannia subsp. equitrojani kozalağı olduğu belirlenmiştir

Determination of Phenolic Acid Composition of Some Herbs from Kaz Mountains, Turkey by High Performance Liquid Chromatography

In present study, phenolic acid compositions gallic, protocathechuic, p-hydroxy benzoic, vanillic, caffeic, chlorogenic, syringic, p-coumaric, ferulic, rosemarinic, o-coumaric and trans-cinnamic acids of herbal parts of Sideritis trojana, Salvia tomentosa, Origanum vulgare subsp. hirtum, Lavandula stoechas subsp. stoechas, Sideritis athoa, Mentha pulegium, Abies nordmannia subsp. equi-trojani cone , Hypericum perforatum, Achillea nobilis subsp. sipylea and Mentha spicata collected from Kaz Mountain were determined by reverse phase-high pressure liquid chromatography RP-HPLC at 280 nm wavelength using propylparaben as internal standard. It was observed that Origanum vulgare subsp. hirtum and Salvia tomentosa are rich in phenolic acids. Rosemarinic acid was the most dominant phenolic acid in these herbal parts. Moreover, Abies nordmannia subsp. equi-trojani cone was found the poorest plant in terms of phenolic acid composition among the herbs analyzed

___

  • [1] Mattila, P., Kumpulainen, J., 2002. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. Journal of Agricultural and Food Chemistry 50: 3660-3667.
  • [2] Balasundram, N., Sundram, K., Samman, S., 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurence, and potential uses. Food Chemistry 99:191-203.
  • [3] Andarwulan, N., Fardiaz, D., Wattimena, G. A., Shetty, K., 1999. Antioxidant activity associated with lipid and phenolic mobilization during seed germination of Pangium edule Reinw. Journal of Agricultural and Food Chemistry 47: 3158-3163.
  • [4] Tsaliki, E., Lagouri, V., Doxastakis, G., 1999. Evaluation of the antioxidantactivity of lupin seed flour and derivatives (Lupinus albus ssp. Graecus). Food Chemistry 65: 71-75.
  • [5] Maillard, M. N., Berset, C., 1995. Evolution of antioxidant activity during kilning, role of insoluble bound phenolic acids of barley and malt. Journal of Agricultural and Food Chemistry 43: 1789-1793.
  • [6] Bocco, A., Cuvelier, M. E., Richard, H., Berset, C., 1998. Antioxidant activity and phenolic composition of citrus peel and seed extracts. Journal of Agricultural and Food Chemistry 46: 2123-2129.
  • [7] Naczk, M., Shahidi, F., 2006 Phenolics in cereals, fruits and vegetables: Occurence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis 41: 1523-1542.
  • [8] Saad, B., Sing, Y.Y., Nawi, M. A., Hashim, N., Mohamed Ali, A. S., Saleh, M.I., Sulaiman, S. F., Talib, K. M., Ahmad, K., 2007. Determination of synthetic phenolic antioxidants in food items using reversed-phase HPLC. Food Chemistry 105: 389- 394.
  • [9] Rodrigez-Delgado, M.A., Malovana, S., Perez, J. P., Borges, T., Garcia Montelongo, F. J., 2001.
  • Seperation of phenolic compounds by highperformance liquid chromatography with absorbance and fluorimetric detection. Journal of Chromatography A 912: 249-257.
  • [10] Perez-Magarino, S., Revilla, I., Gonzalez-SanJose, M. L., Beltran, S., 1999. Various applications of liquid chromatography-mass spectrometry to the analysis of phenolic compounds. Journal of Chromatography A 847: 75-81.
  • [11] Fiamegos, Y. C., Nanos, C. G., Vervoort, J., Stalikas, C. D., 2004. Analytical procedure for the in-vial derivatization-extraction for phenolic acids and flavonoids in methanolic and aqueous plant extracts followed by gas chomatography with massselective detection. Journal of Chromatography A 1041: 11-18.
  • [12] Schmidtlein, H., Hermann, K., 1975. Quantitative analysis for phenolic acids by thin layer chromatography. Journal of Chromatography A 115: 123-128.
  • [13] Cartoni, G., Cocciol, F., Jasionowska, R., 1995 Capillary electrophoretic seperation of phenolic acids. Journal of Chromatography A 709: 209-214.
  • [14] Robbins, R.J., Bean, S. R., 2004. Development of a quantitative high-performance liquid chromatography-photodiode array detection measurement system for phenolic acids. Journal of Chromatography A 1038: 97-105.
  • [15] Tsao, R., Deng, Z. 2004. Seperation procedures for naturally occuring antioxidant phytochemicals. Journal of Chromatography B 812: 85-99.
  • [16] Escarpa, A., Gonzalez, M. C., 2000. Evaluation of high-performance liquid chromatography for determination of phenolic compounds in pear horticultural cultivars. Chromatographia 51: 37-43.
  • [17] Öztürk, N., Tunçel, M., Tuncel, N. B., 2007. Determination of phenolic acids by a modified HPLC: Its application to various plant materials. Journal of Liquid Chromatography and Related Technologies 30: 587-596.
  • [18] Anonim. http://www.phytochemicals.info/phytochemicals/ros marinic-acid.php Erişim tarihi: 01.11.09
  • [19] Zheng, W., Wang, S.Y., 2001. Antioxidant activity and phenolic compounds in selected herbs. Journal of Agricultural and Food Chemistry 49: 5165-5170.
  • [20] Chen, J.H., Ho, C.T., 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. Journal of Agricultural Food Chemistry 45: 2374-2378.
  • [21] Başer K.H.C., 2001. Her derde deva bir bitki kekik. Bilim ve Teknik Mayis 74-77.
  • [22] Oflaz, S., Kürkçüoğlu, M., Başer, K.H.C., 2002. Origanum Onites ve Origanum vulgare subsp. hirtum üzerinde farmakognozik araştırmalar. 14. Bitkisel Đlaç Hammaddeleri Toplantısı, Bildiriler, 29- 31 Mayıs 2002, Eskişehir, ISBN 975-94077-2-8.
  • [23] Erdemir, D.A., 2000. Şifalı Bitkiler, Nobel Tıp Kitabevleri. p.29-51.
  • [24] Zhao, Z., Moghadasian, M.H., 2008 Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chemistry 109 : 691-702.
  • [25] Başer, K.H.C., 2002. Fonksiyonel gıdalar ve nutrasötikler, 14. Bitkisel Đlaç Hammaddeleri Toplantısı, Bildiriler, 29-31 Mayıs 2002, Eskişehir, ISBN 975-94077-2-8
  • [26] Hışıl, Y., Şahin, F., Omay, S.B., 2005. Kantaronun (Hypericum perforatum L.) bileşimi ve tıbbi önemi. International Journal of Hematology and Oncology 4 (15) : 212-218.
  • [27] Özcan, M., Chalchat, J.C., Akgül, A., 2001. Essential oil composition of Turkish mountain tea (Sideritis spp.) Food Chemistry 75: 459-463.
  • [28] Kelen, M., Tepe, B., 2008. Chemical composition, antioxidant and antimicrobial properties of the essential oils of three Salvia species from Turkish flora. Biosource Technology 99: 4096-4104.
  • [29] Yen, G.C., Duh, P.D., Tsai, H.L., 2002. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chemistry 79: 307-313.