Fermente Et Ürünlerinde Fonksiyonel Starter Kültürler

Et endüstrisinde starter kültür olarak kullanılan laktik asit bakterileri ile koagülaz negatif stafilokoklar ürün güvenliği ile renk, tekstür ve diğer duyusal özellikler açısından önemli mikroorganizmalardır. Bu mikroorganizmaların bazı suşları klasik starter kültürlerden farklı olarak diğer bazı fonksiyonel özelliklere de sahiptir. Seçilmiş bu suşların fonksiyonel özelliklerinden dolayı fermente et ürünlerinde kullanılmasına yönelik araştırmalar gün geçtikçe artmaktadır. Fonksiyonel starter kültür olarak adlandırılan bu mikroorganizmalar antimikrobiyal ve nutrasötik bileşikler üretme yetenekleri ile ön plana çıkmaktadır. Diğer taraftan et ürünlerinden izole edilen maya ve küflerin de fonksiyonel özelliklere sahip olduğu bildirilmiştir. Bu çalışmada, fonksiyonel kültür olarak adlandırılan bu mikroorganizmaların özellikleri ve fermente et ürünlerinde kullanabilme imkânları derlenmiştir.

Functional Starter Cultures in Fermented Meat Products

Lactic acid bacteria and coagulase negative staphylococci are important starter cultures used in the meat industry to improve the safety and sensorial properties of meat products such as their color and texture. In contrast to classical starter cultures, some strains of these microorganisms have different functional characteristics. Due to their functional properties, studies on the industrial use of these strains have recently increased. These microorganisms, functional starter cultures, are preferred because of their ability to produce antimicrobial and nutraceutical compounds. On the other hand, some molds and yeasts isolated from meat products are reported to have functional properties as well. In this study, the characteristics of these microorganisms called as functional starter cultures and the possibility of their use in fermented meat products are rewieved.

___

  • [1] Hugas, M., Monfort, J.M., 1997. Bacteria starter cultures for meat fermentation. Food Chemistry 59(4): 547-554.
  • [2] Leroy, F., Verluyten, J., De Vuyst, L., 2006. Functional meat starter cultures for improved sausage fermentation. International Journal of Food Microbiology 106: 270–285.
  • [3] Ammor, M.S., Mayo, B., 2007. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Science 76: 138–146.
  • [4] Albano, H., Todorov, S.D., Van Reenen, C.A., Hogg, T., Dicks, L.M.T., Teixeira, P., 2007. Characterization of two bacteriocins produced by Pediococcus acidilactici isolated from “Alheira”, a fermented sausage traditionally produced in Portugal. International Journal of Food Microbiology 116: 239–247.
  • [5] Pascual, L.M., Daniele, M.B., Giordano, W., Pajaro, M.C., Barberis, I.L., 2008. Purification and partial characterization of novel bacteriocin L23 produced by Lactobacillus fermentum L23. Current Microbiology 56: 397–402.
  • [6] De Vuyst, L. and Leroy, F., 2007. Bacteriocins from lactic acid bacteria: Production, purification, and food applications. Journal of Molecular Microbiology and Biotechnology 13: 194-199.
  • [7] Erkkila, S., Petaja, E., 2000. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Science 55: 297-300.
  • [8] Scannell, A.G.M., Schwarz, G., Hill, C., Ross, R.P., Arendt, E.K., 2001. Pre-inoculation enrichment procedure enhances the performance of bacteriocinogenic Lactococcus lactis meat starter culture. International Journal of Food Microbiology 64:151–159.
  • [9] Kaya, M., Gökalp, H.Y., 2004. Farklı laktik starter kültürler kullanılarak üretilen sucuklarda Listeria monocytogenes’in davranıı. Turkish Journal of Veterinary and Animal Science 28: 1113-1120.
  • [10] Työppönen, S., Markkula, A., Petaja, E., Suihko, M.L., Mattila-Sandholm, T., 2003. Survival of Listeria monocytogenes in North European type dry sausages fermented by bioprotective meat starter cultures. Food Control 14: 181–185.
  • [11] Lavermicocca, P., Valerio, F., Evidente, A., Lazzaroni, S., Corsetti, A., Gobbetti, M., 2000. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Applied and Environmental Microbiology 4084–4090.
  • [12] Dalie, D.K.D., Deschamps, A.M. and RichardForget, F., 2010. Lactic acid bacteria-potential for control of mould growth and mycotoxins: A review. Food Control 21: 370-380.
  • [13] Kuleaan, H., Çakmakçı, M.L., 2002. Effect of reuterin produced by Lactobacillus reuteri on the surface of sausages to inhibit the growth of Listeria monocytogenes and Salmonella spp. Nahrung/Food 46: 408 – 410.
  • [14] Carnio, M.C., Holtzel, A., Rudolf, M., Henle, T., Jung, G., Scherer, S., 2000. The macrocyclic peptide antibiotic micrococcin P1 Is secreted by the food-borne bacterium Staphylococcus equorum WS 2733 and inhibits Listeria monocytogenes on soft cheese. Applied and Environmental Microbiology 2378–2384.
  • [15] Villani, F., Sannino, L., Moschetti, G., Mauriello, G., Pepe, O., Amodio-Cocchieri, R., Coppola, S., 1997. Partial characterization of an antagonistic substance produced by Staphylococcus xylosus 1E and determination of the effectiveness of the producer strain to inhibit Listeria monocytogenes in Italian sausages. Food Microbiology 14: 555-566.
  • [16] Henkle-Dührsen, K., Kampkötter, A., 2001. Antioxidant enzyme families in parasitic nematodes. Molecular & Biochemical Parasitology 114: 129– 142.
  • [17] Barriere, C., Leroy-Setrin, S., Talon, R., 2001. Characterization of catalase and superoxide dismutase in Staphylococcus carnosus 833 strain. Journal of Applied Microbiology 91: 514-519.
  • [18] Brines, L.M., Kovacs, A.J., 2007. Understanding the mechanism of superoxide reductase promoted reduction of superoxide. European Journal of Inorganic Chemistry 1: 29–38.
  • [19] Talon, R., Walter, D., Chartier, S., Barriere, C., Montel, M.C., 1999a. Effect of nitrate and incubation conditions on the production of catalase and nitrate reductase by staphylococci. International Journal of Food Microbiology 52: 47– 56
  • [20] Talon, R., Walter, D., Montel, M.C., 2000. Growth and effect of staphylococci and lactic acid bacteria on unsaturated free fatty acids. Meat Science 54: 41-47.
  • [21] Toldrá, F., Sanz, Y., Flores, M. 2001 Meat Fermentation Technology. In Meat Science and Applications. Chapter 23, Edited by Hui, Y.H., Marcel Dekker, New York, Basel.
  • [22] Talon, R., Leroy, S., Lebert, I., Giammarinaro, P., Chacornac, J-P., Moratalla, M.L., Vidal-Carou, C., Zanardi, E., Conter, M., Lebecque, A., 2008. Safety improvement and preservation of typical sensory qualities of traditional dry fermented sausages using autochthonous starter cultures. International Journal of Food Microbiology 126: 227–234.
  • [23] Hertel, C., Schmidt, G., Fischer, M., Oellers, K., Hammes, W.P., 1994. Oxygen-dependent regulation of the expression of the catalase gene katA of Lactobacillus sakei LTH677. Applied and Environmental Microbiology 1359–1365.
  • [24] Demeyer, D., Raemaekers, M., Rizzo, A., Holck, A., De Smedt, A., Brink, B.T., Hagen, B., Montel, C., Zanardi, E., Murbrekk, E., Leroy, F., Vandendriessche, F., Lorentsen, K., Venema, K., Sunesen, L., Stahnke, L., De Vuyst, L., Talon, R., Chizzolini, R., Eerola, S., 2000. Control of bioflavour and safety in fermented sausages: first results of a European Project. Food Research International 33: 171-180.
  • [25] Bruna, J.M., Hierro, E.M., de la Hoz, L., Mottram, D.S., Fernandez, M., Ordonez, M.A., 2003. Changes in selected biochemical and sensory parameters as affected by the superficial inoculation of Penicillium camemberti on dry fermented sausages. International Journal of Food Microbiology 85: 111 –125.
  • [26] Flores, M., Dura, M.A., Marco, A., Toldra, F., 2004. Effect of Debaryomyces spp. on aroma formation and sensory quality of dry-fermented sausages. Meat Science 68: 439–446.
  • [27] Kishino, S., Ogawa, J., Ando, A., Shimizu, S., 2003. Conjugated a-linolenic acid production from alinolenic acid by Lactobacillus plantarum AKU 1009a. European Journal of Lipid Science and Technology 105:572–577.
  • [28] Kishino, S., Ogawa, J., Omura, Y., Matsumura, K., Shimizu, S., 2002. Conjugated linoleic acid production from linoleic acid by lactic acid bacteria. JAOCS, 79(2): 159-163.
  • [29] Ando, A., Ogawa, J., Kishino, S., Shimizu, S., 2004. Conjugated linoleic acid production from castor oil by Lactobacillus plantarum JCM 1551. Enzyme and Microbial Technology 35: 40–45.
  • [30] Pompei, A., Cordisco, L., Amaretti, A., Zanoni, S., Matteuzzi, D., Rossi, M., 2007. Folate production by Bifidobacteria as a potential probiotic property. Applied and Environmental Microbiology 179-185.
  • [31] Taranto, M.P., Vera, J.L., Hugenholtz, J., De Valdez, G.F., Sesma, F., 2003. Lactobacillus reuteri CRL1098 produces cobalamin. Applied and Environmental Microbiology 5643-5647.
  • [32] Santos, F., Wegkamp, A., De Vos, W.M., Smid, E.J., Hugenholtz, J., 2008. High-Level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112. Applied and Environmental Microbiology 3291–3294.
  • [33] Makras, L., Avonts, L., De Vuyst, L., 2004. Probiotics, prebiotics, and gut health. In Functional foods: Ageing and degenerative disease, Edited by Remacle, C. and Reusens, B., Cambridge, United Kingdom: Woodhead Publishing Ltd. 416–482p.
  • [34] Holzapfel, W.H., Haberer, P., Snel, J., Schillinger, U., Huis in’t Veld, J.H.J., 1998. Overview of gut flora and probiotics. International Journal of Food Microbiology 41: 85–101.
  • [35] Sameshima, T., Magome, C., Takeshit, K., Arihara, K., Itoh, M., Kondo, Y., 1998. Effect of intestinal Lactobacillus starter cultures on the behaviour of Staphylococcus aureus in fermented sausage. International Journal of Food Microbiology 41: 1–7.
  • [36] Hughes, M.C., Kerry, J.P., Arendt, E.K., Kenneally, P.M., McSweeney, P.L.H., O’Neill, E.E., 2002. Characterization of proteolysis during the ripening of semi-dry fermented sausages. Meat Science 62: 205–216.
  • [37] Stahnke, L.H., 1999. Volatiles produced by Staphylococcus xylosus and Staphylococcus carnosus during growth in sausage minces Part II. the influence of growth parameters. LebensmittelWissenschaft und-Technologie 32: 365-371.
  • [38] Mauriello, G., Casaburi, A., Villani, F., 2002. Proteolytic activity of Staphylococcus xylosus strains on pork myofibrillar and sarcoplasmic proteins and use of selected strains in the production of ‘Naples type’ salami. Journal of Applied Microbiology 92:482-490.
  • [39] Beck, H.C., Hansen, A.M., Lauritsen, F.R., 2004. Catabolism of leucine to branched-chain fatty acids in Staphylococcus xylosus. Journal of Applied Microbiology 96: 1185-1193.
  • [40] Kaban, G., Kaya, M., 2008. Identification of lactic acid bacteria and Gram-positive catalase-positive cocci isolated from naturally fermented sausage (sucuk). Journal of Food Science 73(8): M385- M388.
  • [41] Montel, M.C., Seronie, M.P., Talon, R., Hebraud, M., 1995. Purification and characterization of a dipeptidase from Lactobacillus sake. Applied and Environmental Microbiology 837-839.
  • [42] Sanz, Y., F. Toldrá., 1997. Purification and characterization of an aminopeptidase from Lactobacillus sake. Journal of Agriculture and Food Chemistry 45: 1552-1558.
  • [43] Sanz, Y., Fadda, S., Vignolo, G., Aristoy, M.C., Oliver, G., Toldrá, F., 1999. Hydrolytic action of Lactobacillus casei CRL 705 on pork muscle sarcoplasmic and myofibrillar proteins. Journal of Agriculture and Food Chemistry 47: 3441–3448.
  • [44] Fadda, S., Sanz, Y., Vignolo, G., Aristoy, M.C., Oliver, G., Toldrá, F., 1999. Hydrolysis of pork muscle sarcoplasmic proteins by Lactobacillus curvatus and Lactobacillus sake. Applied and Environmental Microbiology 65: 578–584.
  • [45] Hierro, E., de la Hoz, L., Ordonez, J.A., 1997. Contribution of microbial and meat endogenous enzymes to the lipolysis of dry fermented sausages. Journal of Agriculture and Food Chemistry 45: 2989-2995.
  • [46] Lopes, M.D.S., Cunha, A.E., Clemente, J.J., Carrondo, M.J.T., Crespo, M.T.B., 1999. Influence of environmental factors on lipase production by Lactobacillus plantarum. Applied Microbiology and Biotechnology 51:249–254.
  • [47] Kenneally, P.M., Schwarz, G., Fransen, N.G. and Arendt, E.K., 1998. Lipolytic starter culture effects on production of free fatty acids in fermented sausages. Journal of Food Science 63 (3): 538-543.
  • [48] Sørensen, B.B., 1997. Lipolysis of pork fat by the meat starter culture Staphylococcus xylosus at various environmental conditions. Food Microbiology 14: 153–160.
  • [49] Talon, R., Chastagnac, C., Vergnais, L., Montel, M.C., Berdague, J.L., 1998. Production of esters by Staphylococci. International Journal of Food Microbiology 45: 143–150.
  • [50] Jessen, B., 1995. Starter cultures for meat fermentation. In Fermented Meats, Edited by Campbell-Platt, G. and Cook, P.E., Blackie Academic and Professional, Glasgow, 39-51p.
  • [51] Kaya, M. ve Kaban, G., 2010. Fermente et ürünleri. In Gıda Biyoteknolojisi, Edited by Aran, N., Nobel Yayın Daıtım, 157-195p.
  • [52] Mathur, S., Singh, R., 2005. Antibiotic resistance in food lactic acid bacteria—a review. International Journal of Food Microbiology 105: 281–295.
  • [53] Resch, M., Nagel, V., Hertel, C., 2008. Antibiotic resistance of coagulase-negative Staphylococci associated with food and used in starter cultures. International Journal of Food Microbiology 127: 99– 104.
  • [54] Kastner, S., Perreten, V., Bleuler, H., Hugenschmidt, G., Lacroix, C., Meile, L., 2006. Antibiotic susceptibility patterns and resistance genes of starter cultures and probiotic bacteria used in food. Systematic and Applied Microbiology 29: 145–155.
  • [55] Ammor, M.S., Gueimonde, M., Danielsen, M., Zagorec, M., van Hoek, A.H.A.M., Reyes-Gavilan, C.G.D.L., Mayo, B., Margolles, A., 2008. Two different tetracycline resistance mechanisms, plasmid-carried tet(L) and chromosomally located transposon-associated tet(M), coexist in Lactobacillus sakei Rits 9. Applied and Environmental Microbiology 74(5): 1394-1401.
  • [56] Gevers, D., Huys, G., Swings, J., 2003. In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiology Letters 225(1):125- 130.
  • [57] Danielsen, M., Wind, A., 2003. Susceptibility of Lactobacillus spp. to antimicrobial agents. International Journal of Food Microbiology 82:1–11.
  • [58] Ruiz-Capillas, C., Jimenez-Colmenero, F., 2004. Biogenic amines in meat and meat products. Critical Reviews in Food Science and Nutrition 44(7-8): 489-499.