Çileklerdeki Bazı Pestisit Kalıntıları Üzerine İşleme Türü ve Depolama Süresinin Etkisi

Bu çalışmada Gaz Kromatografisi-Kütle Spektrometresi (GC/MS) ile analiz edilebilen 9 aktif madde kullanılmıştır. Çileklerin yıkanması, pastörize edilmesi, soğukta muhafaza edilmesi ve farklı günler yapılan yıkama işlemi sonrasında kalıntı değişimleri belirlenmiştir. Ayrıca çilek püresi -18±2ºC’de, pastörize püre ise farklı sıcaklıklarda muhafaza edilmiştir. Pastörizasyon işleminde en yüksek ve en düşük işleme faktörü sırasıyla tebufenpirad (Pf:1.20) ve tetrakonazol (Pf:0.81) için hesaplanmıştır. Soğuk muhafaza esnasında kresoksim-metil degradasyonu istatistiksel olarak önemli bulunmuştur (p<0.05). Soğuk muhafaza işlemi sonunda penkonazol hesaplama limitinin altına düşmüştür. Pirimetanil ve tebufenpirad miktarlarında değişme olmamıştır. Azoksistrobin, boskalid, tetrakonazol ve kresoksim-metil kalıntılarının sırasıyla %3.8, 10.9, 25.0 ve 36.4 azaldığı belirlenmiştir. İlaçlı çileklerin yıkanması ile tebufenpirad kalıntılarında azalma olmamıştır ancak azoksistrobin %3.8, pirimetanil %4.2, bupirimat %4.5, kresoksim-metil %9.1, boskalid %10.9 ve tetrakonazol kalıntıları %16.7 oranında azalmıştır. Uzun süreli muhafazada pestisit kalıntılarında en çok ve en hızlı azalmanın 20±2ºC’de olduğu ve pastörizasyon işleminin etkisiyle bu azalmanın yavaşladığı belirlenmiştir. Pastörizasyon işleminden sonra -18±2ºC’de muhafaza edilen örneklerdeki pestisit degradasyonu bir yılın sonunda tetrakonazol %20, pirimetanil %23, azoksistrobin %26, kresoksim-metil %27, boskalid %37 ve bupirimat %41 olarak belirlenmiştir. Sonuç olarak degradasyonun pestisitin kimyasal özelliklerine, başlangıç konsantrasyonuna, tarımsal ürüne, yapılan işleme ve muhafaza koşullarına bağlı olarak değiştiği belirlenmiştir.

Effect of Processing Type and Storage Time on Some Pesticide Residues in Strawberries

In this study, 9 active substances that could be analysed by Gas Chromatography-Mass Spectrometer (GC/MS) were used. Changes in these pesticide residues were determined after strawberries were washed, pasteurized, stored in cold and washed on different days. In addition, strawberry puree was stored at -18±2ºC and pasteurized puree was stored at different temperatures. The highest and lowest processing factors in the pasteurization process were determined in tebufenpyrad (Pf:1.20) and tetraconazole (Pf:0.81), respectively. During cold storage, kresoxim-methyl degradation was found statistically significant (p<0.05). At the end of cold storage, penconazole was below the quantification limit while pyrimethanil and tebufenpyrad did not change; however, azoxystrobin, boscalid, tetraconazole and kresoxim-methyl residues decreased by 3.8, 10.9, 25.0 and 36.4%, respectively. Washing process did not reduce tebufenpyrad residues. On the other hand, reduction rates were 3.8, 4.2, 4.5 and 9.1% for azoxystrobin, pyrimethanil, bupirimate and kresoxim-methyl, respectively while they were 10.9% for boscalid and 16.7% for tetraconazole. During long-term storage, the highest and the fastest decrease in pesticide residues was observed at 20±2ºC, and this decrease slowed down with the effect of pasteurization. Pesticide degradation rates at the end of one-year storage period in the samples stored at -18±2 ºC following pasteurization were 20, 23, 26, 27, 37 and 41% for tetraconazole, pyrimethanil, azoxystrobin, kresoxim-methyl, boscalid and bupirimate, respectively. As a result, it was found that pesticide degradation was dependent upon the chemical nature of pesticides, initial concentration, agricultural commodity, processing and storage conditions.

___

  • [1] Jeong, L.S., Kwak, B.M., Ahn, J.H., Jeong, S.H. (2012). Determination of pesticide residues in milk using QuEChERS-based method developed by response surface methodology. Food Chemistry, 133, 473-481.
  • [2] Commission, E. (1997). Appendix E. Processing Studies. Directorate General for Agriculture. Retrieved from https://food.ec.europa.eu/system/files/2016-10/pesticides_mrl_guidelines_app-e.pdf
  • [3] Aguilera, A., Valverde, A., Camacho, F., Boulaid, M., Garcia-Feuntes, L. (2014). Household processing factors of acrinathrin, fipronil, kresoxim-metyl and pyridaben residues in green beans. Food Control, 35, 146-152.
  • [4] Bajwa, U., Sandhu, K.S. (2014). Effect of handling and processing on pesticide residues in food-a review. Journal of Food Science and Technology, 51(2), 201-220.
  • [5] Yigit, N., Velioglu, Y.S. (2020). Effects of processing and storage on pesticide residues in foods. Critical Reviews in Food Science and Nutrition, 60(21), 3622-3641.
  • [6] Zhao, L., Ge, J., Liu, F., Jiang, N. (2020). Effects of storage and processing on residue levels of chlorpyrifos in soybeans. Food Chemistry, 150, 182-186.
  • [7] BfR. (2019). BfR data collection on processing factors. Updated communication No: 034. Retrieved March 21, 2021, from https://www.bfr.bund.de/cm/349/bfr-data-collection-on-processing-factors.pdf
  • [8] Kafkas, E. (2017). Strawberry growing in Türkiye: current status and future prospects. Acta Horticulture, 1156, 903-908.
  • [9] FAOSTAT. (2021). Production data of Food and Agriculture Organization of the United Nations. Retrieved 18 March, 2021, from Food and Agriculture Organization of the United Nations: http://www.fao.org/faostat/en/#data/QC
  • [10] Giampieri, F., Tulipani, S., Alvarez-Suarez, J.M., Oiles, J.L., Mezzetti, B., Battino, M. (2012). The strawberry: composition, nutritional quality, and impact on human health. Nutrition, 28, 9-19.
  • [11] Giampieri, F., Alvarez-Suarez, J.M., Battino, M. (2014). Strawberry and human health: effects beyond antioxidant activity. Journal of Agricultural and Food Chemistry, 62, 3867-3876.
  • [12] Commission, E. (2017). EU Pesticides database. Retrieved January 25, 2022, from European Commission: https://ec.europa.eu/food/plants/pesticides/eu-pesticides-database_en
  • [13] Kırıs, S., Velioglu, Y.S. (2016). Reduction in pesticide residue levels in olives by ozonated and tap water treatments and their transfer into olive oil. Food Additives and Contaminants Part A, 33, 128-136.
  • [14] Anastassiades, M., Lehotay, S.J., Štajnbaher, D., Schenck, F.J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/ partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of Association of Official Analytical Chemists International, 86(2), 412-431.
  • [15] Yigit, N., Bayhan-Öktem, A., Yentür, G. (2012). Development of multiple residue analysis method by high pressure liquid chromatography (HPLC) for the analysis of pesticide residues in some fruits and vegetables. Plant Protection Bulletin, 52(4), 375-394.
  • [16] SANTE. (2019). Guidance document on analytical quality control and method validation procedures for pesticide residues analysis in food and feed SANTE/12682/2019. Retrieved January 26, 2019, from https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf
  • [17] Bolaños, P.P., Moreno, J.L., Shtereva, D.D., Frenich, G.A., Vidal, J.L. (2007). Development and validation of a multiresidue method for the analysis of 151 pesticide residues in strawberry by gas chromatography coupled to a triple quadrupole mass analyzer. Rapid Communications in Mass Spectrometry, 21, 2282-2294.
  • [18] Morales, A., Ruiz, I., Oliva, J., Barba, A. (2011). Determination of sixteen pesticides in peppers using high-performance liquid chromatography/ mass spectrometry. Environmental Science and Health, Part B: Pesticides, Food Contaminants and Agricultural Wastes, 46, 525-529.
  • [19] Pizzutti, I.R., Dias, J.V., Kok, A., Cardoso, C.D., Vela, G.M. (2016). Pesticide residues method validation by UPLC-MS/MS for accreditation purposes. Journal of the Brazilian Chemical Society, 27(7), 1165-1176.
  • [20] Jiang, W., Chen, X., Liu, F., Pan, C. (2019). Residue distribution, dissipation behavior and removal of four fungicide residues on harvested apple after waxing treatment. Journal of Agricultural and Food Chemistry, 67, 2307-2312.
  • [21] Shokr, A.S., Malhat, F., Saber, E.S., El-Gammal, H.A., Ahmed, M.T. (2019). Dynamic distribution of azoxystrobin residues in strawberry (Fragaria x ananassa Duchesne) using liquid chromatography tandem mass spectrometry: Putative evaluation of dietary intake. International Journal of Environmental Analytical Chemistry, 101(15), 2479-2490.
  • [22] Lozowicka, B., Jankowska, M., Hrynko, I., Kaczynski, P. (2016). Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environmental Monitoring Assessment, 188(1), 51.
  • [23] Angioni, A., Schirra, M., Garau, V.L., Melis, M., Tuberoso, C.I., Cabras, P. (2004). Residues of azoxystrobin, fenhexamid and pyrimethanil in strawberry following field treatments and the effect of domestic washing. Food Additives and Contaminants, 21(11), 1065-1070.
  • [24] Cámara, M.A., Cermeño, S., Martínez, G., Oliva, J. (2020). Removal residues of pesticides in apricot, peach and orange processed and dietary exposure assessment. Food Chemistry, 325, 126936.
  • [25] Peng, W., Zhao, L., Liu, F., Xue, J., Li, H., Shi, K. (2014). Effect of paste processing on residue levels of imidacloprid, pyraclostrobin, azoxystrobin and fipronil in winter jujube. Food Additives & Contaminants Part A, 31(9), 1562-1567.
  • [26] Jiang, Y., Shibamoto, T., Li, Y., Pan, C. (2013). Effect of household and commercial processing on acetamiprid, azoxystrobin and methidathion residues during crude rapeseed oil production. Food Additives and Contaminants Part A, 30(7), 1279-1286.
  • [27] Amvrazi, E. G. (2011). Fate of pesticide residues on raw agricultural crops after postharvest storage and food processing to edible portions. In Pesticides-formulations, effects, fate. Edited by M. Stoytcheva. IntechOpen. Retrieved May 20, 2021, from https://www.intechopen.com/chapters/13027.
  • [28] Kwak, S.Y., Lee, S.H., Jeong, H.R., Nam, A.J., Sarker, A., Kim, H.Y., Kim, J.E. (2019). Variation of pesticide residues in strawberries by washing and boiling processes. Korean Journal of Environmental Agriculture, 38(4), 281-290.
  • [29] Jankowska, M., Kaczynski, P., Hrynko, I., Lozowicka, B. (2016). Dissipation of six fungicides in greenhouse-grown tomatoes with processing and health risk. Environmental Science and Pollution Research, 23, 11885-11900.
  • [30] Shah, R. (2020). Pesticides and Human Health. In Emerging Contaminants. Edited by A. Nuro. IntechOpen. Retrieved March 30, 2022, from https://www.intechopen.com/chapters/73921
  • [31] Skrede, G. (1996). Fruits. In Freezing Effects on Food Quality. Edited by E.J. Lester. Marcel Dekker Inc. New York, 432p.
  • [32] Ancos, B., Ibañez, E., Reglero, G., Cano, P. (2000). Frozen storage effects on anthocyanins and volatile compounds of raspberry fruit. Journal of Agricultural Food Chemistry, 48(3), 873-879.
  • [33] Afridi, I. A., Parveen, Z., Masud, S.Z. (2001). Stability of organophosphate and pyrethroid pesticides on wheat in storage. Journal of Stored Products Research, 37(2), 199-204.
  • [34] Barceló, D.A. (1996). A review of sample storage and preservation of polar pesticides in water samples. Chromatographia, 42, 704-712.
  • [35] Aboulfadl, K., De Potter, C., Prévost, M., Sauvé, S. (2010). Time-dependent integrity during storage of natural surface water samples for the trace analysis of pharmaceutical products, feminizing hormones and pesticides. Chemistry Central Journal, 4, 1-10.
  • [36] Domingues, V., Cabral, M., Alves, A., Delerue-Matos, C. (2009). Use and reuse of SPE disks for the determination of pyrethroids in water by GC-ECD. Analytical Letters, 42(4), 706-726.
  • [37] Demiray, E., Tülek, Y. (2010). Donmuş muhafaza sırasında meyve ve sebzelerde oluşan kalite değişimleri. Akademik Gıda, 8(2), 36-44.