Yerli Borik Asitten Kalıntı Karbon İçermeyen Bor Karbür Sentezi

Bu çalışmada, yerli borik asit ve teknik kalite mannitol kullanılarak borik asidin esterifikasyonuyla sentezlenen jel öncü malzemeler üzerinden kalıntı karbon içermeyen bor karbür tozlarının üretimi karbotermik indirgeme yöntemiyle gerçekleştirilmiştir. Literatürdeki diğer çalışmalardan farklı olarak bor bileşenlerinin buharlaşması nedeniyle meydana gelen bor kayıpları, sisteme kalsiyum kaynağının eklenmesiyle önlenmiş ve jelleşme sırasında sistemdeki tüm borik asidin esterleşmesi için sistemin pH değeri sabitlenmiştir. Sentezlenen esterlerin kimyasal yapıları FTIR (Fourier Dönüşüm Kızılötesi Spektroskopisi) kullanılarak, termal özellikleri ise STA (Simultane Termal Analiz) ile incelenmiştir. Elde edilen tozların faz analizleri XRD (X-Ray Difraksiyonu), morfolojik özellikleri ve parçacık boyutları ise SEM (Taramalı Elektron Mikroskobu) ile analiz edilmiştir. Kalıntı karbon içermeyen bor karbür tozları 1350°C’de 6 saat Argon atmosferi altında gerçekleştirilen karbotermik indirgemeyle elde edilmiştir.

Synthesis of Boron Carbide Without Excess Carbon over Local Boric Acid

In this study, boron carbide powders without excess carbon were produced via carbothermic reduction over gel precursors synthesized by esterification of local boric acid and technical grade mannitol. Boron loss due to the volatilization of boron compounds was eliminated by addition of calcium source and pH value of system was fixed to esterify of all boric acid. Chemical structure of synthesized esters were studied with using FTIR (Fourier Transform Infrared Spectroscopy) and thermal properties also were studied with using STA (Simultaneous Thermal Analysis). Phase analysis of obtained powders were studied via XRD (X-Ray Diffraction) and particle size and morphology of powders also were investigated via SEM (Scanning Electron Microscopy). Boron carbide powders without excess carbon were obtained via carbothermic reduction at 1350°C for 6 hours under an argon atmosphere.

___

  • Alizadeh, A., Taheri-Nassaj, E. & Ehsani, N., 2004. Synthesis of boron carbide powder by a carbothermic reduction method. Journal of the European Ceramic Society, 24(10–11), pp.3227– 3234.
  • Bigdeloo, J. a & Hadian, a M., 2009. Synthesis of High Purity Micron Size Boron Carbide Powder from B2O 3/C Precursor. , 1(5), pp.580–586.
  • Hadian, A.M. & Bigdeloo, J.A., 2008. The effect of time, temperature and composition on boron carbide synthesis by sol-gel method. Journal of Materials Engineering and Performance, 17(1), pp.44–49.
  • Kakiage, M., Tominaga, Y., Yanase, I. , Kobayashi, H., .2012. “Synthesis of boron carbide powder in relation to composition and structural homogeneity of precursor using condensed boric acid–polyol product”, Powder Technology, 221, 257–263.
  • Kakiage, M. et al., 2013. Effect of molecular structure of polyols with different molecular characteristics on synthesis of boron carbide powder. Key Engineering Materials, 534, p.61-65, 6 .
  • Kankare, J.J., 1973. Determination of Stability Constants of Mononuclear Complexes by Potentiostatic Titration. Mannitol-Boric Acid System. Analytical Chemistry, 45(12), pp.2050–2056.
  • Jung, C.H., Lee, M.J. & Kim, C.J., 2004. Preparation of carbon-free B4C powder from B2O3 oxide by carbothermal reduction process. Materials Letters, 58(5), pp.609–614.
  • Makkee, M., Kieboom, A.P.G. & van Bekkum, H., 1985. Studies on borate esters III. Borate esters of Dmannitol, D-glucitol, D-fructose and D-glucose in water. Recl. Trav. Chim. Pays-Bas, 104, pp.230–235.
  • Mirabelli, M. G., Lynch, A. T., & Sneddon, L. G., .1989. “Molecular and Polymeric Precursors to Boron-Based Ceramics”, Sold State Ionics, 655-660.
  • Mondal, S. & Banthia, A.K., 2005. Low-temperature synthetic route for boron carbide. Journal of the European Ceramic Society, 25(2–3 SPEC. ISS.), pp.287–291.
  • Rentzepis, P., White, D. & Walsh, P.N., 1960. The reaction between B2O3(l) and C(s): Heat of formation of B2O2(g). Journal of Physical Chemistry, 64(11), pp.1784–1787.
  • Scott, J.J., 1964. Arc Furnace Process For the Production of Boron Carbide.
  • Sinha, A., Mahata, T., & Sharma, B. P., .2002. “Carbothermal route for preparation of boron carbide powder from boric acid-citric acid gel precursor”. Journal of Nuclear Materials, 165-169.
  • Sudoh, A. et al., 2007. Synthesis of boron carbide microcrystals from saccharides and boric acid. Tanso, 2007, pp.8–12.
  • Suri, A. K., Subramanian, C., Sonber, J. K., & Murthy, T. S., .2010. “Synthesis and consolidation of boron carbide: a review”, Institute of Materials, Minerals and Mining, 4-39.
  • Tahara, N. et al., 2013. Effect of addition of tartaric acid on synthesis of boron carbide powder from condensed boric acid-glycerin product. Journal of Alloys and Compounds, 573, pp.58–64.
  • Thevenot, F., .1990. “Boron Carbide - A Comprehensive Review”, Journal of the European Ceramic Society, 205-225.
  • Yanase, I., Ogawara, R. & Kobayashi, H., 2009. Synthesis of boron carbide powder from polyvinyl borate precursor. Materials Letters, 63(1), pp.91–93.
  • Yilmaz, D., N. Koç, and S. Turan. 2016. “Synthesis of Calcium Hexaboride Powder via Boro/ Carbothermal Reduction with a Gel Precursor.” J. Ceram. Sci. Tech 356(4):7–349.
  • Zakharova, K. et al., 2013. Synthesis of Boron Carbide from Boric Acid and Carbon-Containing Precursors. , 2(3), pp.1–4.
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ