Türkiye’de Bölgesel Jeoid Tespiti için Yüksek Dereceli Jeopotansiyel Modellerin Değerlendirilmesi

Küresel harmonik katsayılardan oluşan yüksek dereceli jeopotansiyel modeller Dünya'nın dış gravite alanının modellenmesi için kullanılır. Bu katsayılar uydu takip verisinden, altimetre verisinden ve yersel graviteden türetilir. Yüzbinlerce katsayı ve bu katsayıların standart sapma değerleri milyonlarca ölçümden hesaplanır. Jeopotansiyel modelin doğruluğu ölçümlerin miktarından, dağılımından ve türünden etkilenir. Uydu gravite görevleri, 1960 lardan beri jeopotansiyel modelleri oluşturan doğru veri sağlamaktadır. Uydu gravite görevleri ile bağlantılı jeopotansiyel modeller iç geçerlilik (tam normalleştirilmiş katsayıların hesaplanan hata derece varyansları) veya dış geçerlilik (model bazlı gravite anomalilerinin ve jeoid yüksekliklerinin yersel ölçüler ile karşılaştırılması) ile değerlendirilir. Bu çalışmada, güncel yüksek dereceli jeopotansiyel modeller öncelikli olarak açıklanmış ve seçilmiş bir çalışma alanında GNSS/nivelman verisi kullanılarak değelendirilmiştir. Bu değerlendirmenin amacı, Türkiye'deki bölgesel jeoid tespiti çalışmalarına katkıda bulunmak için, çalışma alanındaki GNSS/nivelman verisine daha iyi uyan yüksek dereceli jeopotansiyel modelin belirlenmesidir.

The Evaluation of High-Degree Geopotential Models for Regional Geoid Determination in Turkey

High-degree geopotential models of spherical harmonic coefficients are used for modelling the exterior gravity field of the Earth. These coefficients are derived from satellite tracking data, altimeter data, and terrestrial and airborne gravity data. Hundreds of thousands of coefficients and standard deviation values for these coefficients are estimated from millions of measurements. The geopotential model accuracy is affected by the amount, the distribution and the type of measurements. The satellite gravity field missions haveprovided accurate data forming geopotential models since 1960’s. The geopotential models related to the satellite gravity field missions are experienced by interior validation (estimated error degree variances of fully-normalized coefficients) or outer validation (comparison of model based gravity anomalies and geoid heights with terrestrial measurements). In this paper, recent high-degree geopotential models are primarily explained and evaluated by GNSS/levelling data of a selected study area. The objective of this evaluation is to determine the high-degree geopotential model giving a better fit to the GNSS/levelling data over the study area for the contribution to the regional geoid determination studies in Turkey

___

  • Banarjee, P., Foulger, G.R., Satyaprakash, Dabral, C.P. (1999). Geoid undulation modelling and interpretation at Ladak, NW Himalaya using GPS and levelling data. Journal of Geodesy, 73, 79-86.
  • Erol, B., Sideris, M.G., Celik, R.N. (2009). Comparison of global geopotential models from the champ and grace missions for regional geoid modelling in Turkey. Studia Geophysica et Geodaetica, 53, 419-441.
  • Förste, C., Flechtner, F., Schmidt, R., Stubenvoll, R., Rothacher, M., Kusche, J., Neumayer, K.H., Biancale, R., Lemoine, J.-M., Barthelmes, F., Bruinsma, S., König, R., Meyer, U. (2008). EIGEN-GL05C - A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophysical Research Abstracts, Vol. 10, EGU2008-A-03426, SRef-ID: 1607- 7962/gra/EGU2008-A-03426, 2008.
  • Förste, C., Bruinsma, S.L., Abrikosov, O., Lemoine, J.-M., Marty, J.C., Flechtner, F., Balmino, G., Barthelmes, F., Biancale, R. (2015). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. http://dx.doi.org/10.5880/icgem.2015.1.
  • Gilardoni, M., Reguzzoni, M., Sampietro, D. (2016). GECO: a global gravity model by locally combining GOCE data and EGM2008. Studia Geophysica et Geodaetica, 60, 228-247.
  • Heiskanen, W.A., Moritz, H. (1967). Physical Geodesy.W.H. Freeman, San Francisco.
  • Kiamehr, R., Sjöberg, L.E. (2005). Comparison of the qualities of recent global and local gravimetric geoid models in Iran. Studia Geophysica et Geodaetica, 49, 289-304.
  • Kilicoglu, A., Direnc, A., Yildiz, H., Bolme, M., Aktug, B., Simav, M., Lenk, O. (2011). Regional gravimetric quasi-geoid model and transformation surface to national height system for Turkey (THG-09). Studia Geophysica et Geodaetica, 55, 557-578.
  • Kotsakis, C. (2008). Transforming ellipsoidal heights and geoid undulations between different geodetic reference frames. Journal of Geodesy, 82, 249-260.
  • Kotsakis, C., Katsambalos, K., Gianniou, M. (2009). Evaluation of EGM08 based on GPS and orthometric heights over the Hellenic mainland. Newton’s Bulletin, 4, 144-163.
  • Mainville, A., Forsberg, R., Sideris, M.G. (1992). Global positioning system testing of geoids computed from geopotential model and local gravity data: a case study. Journal of Geophysical Research, 97 (B7), 11137-11147.
  • Pavlis, N.K., Holmes, S.A., Kenyon S.C., Factor J.K. (2008). An earth gravitational model to degree 2160: EGM2008. General Assembly of the European Geosciences Union, 13-18 April, Vienna, Austria.
  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117, B04406, doi: 10.1029/2011JB008916.
  • Rapp, R.H. (1997). Past and future developments in geopotential modelling, in: Forsberg, R, Feissl, M., Dietrich, R. (Eds.) Geodesy on the Move, Springer, Berlin, pp. 58-78.
  • Rummel, R., Balmino, G., Johannessen, ., Visser, P., Woodworth, P. (2002). Dedicated gravity field missionsprinciples and aims. Journal of Geodynamics, 33, 3-20. Tenzer, R., Vanicek, P., Santos, M., Featherstone, W.E.,
  • Kuhn, M. (2005). The rigorous determination of orthometric heights. Journal of Geodesy, 79, 82-92.