Sonuç Analizi ile Belirlenen Etki Mesafeleri Üzerine Atmosferik Seçimlerin Etkisi (ALOHA Yazılımı)

Bu çalışmada, yanabilen madde (metan), toksik sıvı (etilen diamin) ve toksik gaz (metil klorür) tehlikeli kimyasalları için ALOHA yazılımı ile sonuç analizleri yürütülmüştür. Analizler, aynı madde miktarı (1000kg/s) üzerinden Kocaeli ilinin ortalama koşulları dikkate alınarak her birinde bir atmosferik parametrenin değiştirilmesi ile elde edilen özel durumlarda gerçekleştirilmiştir. Tehlike kaynağı doğrudan kaynak olarak kabul edilmiş, her bir özel durum için toksik bölge, yanabilir bölge ve yüksek basınç etkilerinin olduğu bölgede etki mesafesi değerleri belirlenmiştir. En geniş etki mesafesi değerleri (>10km) toksik sıvı (etilen diamin) için elde edilmiştir. İncelenen parametreler arasında en ciddi değişim atmosferik kararlılık sınıfının değiştirilmesi ile yanabilen madde(metan) için belirlenmiş, etki mesafesi değerlerinin yaklaşık 2 kat arttığı tespit edilmiştir. Tüm kimyasallar için rüzgar hızının artışı ile etki mesafesi değerlerinin azaldığı belirlenmiştir. Kırsal alan, kentsel/orman alan ve su ortamı arasında tüm kimyasallar için en geniş etki mesafesi değerleri su ortamında elde edilmiştir. Rüzgar yönü ve nemliliğin üç kimyasal için de etki mesafesi değerlerini değiştirmediği belirlenmiştir. Havanın bulutluluğunun yanabilen madde (metan) için tüm tehlike bölgelerindeki etki mesafelerinde etkili olduğu görülmüştür. Seçilen üç tehlikeli kimyasal için de atmosferik seçimlerin özellikle rüzgar hızı, atmosferik kararlılık sınıfı ve yüzey pürüzlülüğünün tehlike bölgelerindeki etki mesafeleri üzerine önemli etkilerinin olduğu belirlenmiştir

Atmospheric Options Effects on Threat Zones Determined by The Consequence Analysis (ALOHA Software)

In this study, consequences analysis were performed with ALOHA Software for hazardous chemicals which were flammable substance (methane), toxic liquid (ethylene diamine) and toxic gas (methyl chloride). Analysis were carried out for special cases obtained by changing an atmospheric parameter in each of considering the average conditions of Kocaeli with the same amount of substance (1000 kg / s). Hazard source was assumed as a direct source and effect distances were identified for each specific case in the region of toxic area, flammable area and blast area of vapor cloud. The largest effect distance values (> 10 km) were obtained for toxic liquid (ethylene diamine). Among the examined parameters the most significant changes were determined for flammable substance (methane) with a change of weather stability class and the effect distances values were identified with an approximate 2fold increase. It was indicated that the effect distances decreased with increasing the wind speed for all of the chemicals. The largest effect distance values were obtained on water environment for all chemicals among the rural, urban/forest area and water environment. It was determined that wind direction and humidity did not change the effect distance values for the three chemicals. It was shown that there was effect of air cloudiness on flammable substance (methane) effect distances in the entire threat zone.It was determined that atmospheric options, especially wind speed, atmospheric stability class and ground roughness, had significant effects on the effect distances within the threat zones for the selected three hazardous chemicals

___

  • Feng, Q.L., Cai, H., Chen, Z.L., Guo, D.J., Ma, Y., 2014. Consequence Analysis of Jet Fire Accidents Occurred in Salt Cavern Natural Gas Storage: Hazard Distance and its Influence Factors. Advanced Materials Research, 1008- 1009, 346-355.
  • Gharabagh, M.J., Asilian, H., Mortasavi, S.B., Zarringhalam Mogaddam, A., Hajizadeh, E., Khavanin, A., 2009. Comprehensive risk assessment and management of petrochemical feed and product transportation pipelines. Journal of Loss Prevention in the Process Industries, 22, 4, 533-539.
  • Guarnaccia, J., Hoppe, T., 2008. Off-site toxic consequence assessment: A simplified modeling procedure and case study. Journal of Hazardous Materials, 159, 1, 177-184.
  • Jabbari, M., Kavousi, A., 2011. Consequence Analysis of Flammable Chemical Releases from a Pipeline. Computational Sciences and Optimization (CSO), 1215 – 1219.
  • Kotek, L., Mukhametzinova, L., Holub, M., ve Blecha, P., 2014. Low Concentration of Oxygen in External Environment -Modeling the Consequences of Accident. Chemıcal Engıneerıng Transactions, 36, 553-558.
  • Li, S., Liu, L., Fan, T., Cao, H., 2013. Environmental Diffusion Analysis and Consequence Prediction of Liquefied Ammonia Leakage Accident. Journal of Applied Science, 13, 12, 2131-2138.
  • Norhamimi, M.H., Libriati, Z., Nordin, Y., Norhazilan, M.N., 2015. Environmental Loss Assessment for Gas Pipeline Failure by Considering Localize Factors Using Fuzzy Based Approach. Applied Mechanics and Materials, 735, 163-167.
  • Shao, H., Dong, Guo-jiang, Duan, Guo-ning, 2013. Research on Occupational Hazards and Environmental Risks of Benzene Leakage. Journal of Changzhou University (Natural Science Edition), 2.
  • Shuai, L., Ru-yi, X., Jing, S., 2009. Quantitative risk assessment of liquefied petroleum gas tanker fire and explosion consequences. Journal of Shandong Institute of Light Industry (Natural Science Edition), 3.
  • Taghehbaf, M.A., Givehchi, S., Ardestani, M., Baghvand, A., 2014. Modeling the Consequences of Potential Accidents in One of the Gasoline Storage Tanks at Oil Storage of Yazd, in Terms of Explosion. International Journal of Engineering Innovations and Research, 5, 4, 550-560.
  • Thoman, D.C., O’Kula, K.R., Laul, J.C., Davis, M.W., Knecht, K.D., 2006. Comparison of ALOHA and EPIcode for Safety Analysis Applications. Journal of Chemical Health and Safety, 13, 6, 20–33.
  • Xing, Z.X., Wang, X.J., 2012. The Consequence Analysis of Pressure Vessel Failure. Advanced Materials Research, 396-398, 66-70.
  • Xing, Zhi-xiang, Wang, Yun-hui, 2015. Safety assessment and fire design of the synthesis and refining unit for annual 10000t methanol. Journal of Safety and Environment, 3.
  • Wang, G. S., Wang, Zhi-rong, 2010. Simulation analysis on the accident of hydrogen chloride release with the simulation software ALOHA. Fire Science and Technology , 8.
  • Zhao, Ying-cheng, Tian, Yu-min, 2013. Analysis over the simulated calculation of the consequences caused by explosive accidents in the benzene tanks. Journal of Safety and Environment, 2.
  • http://www.epa.gov/cameo/aloha-software (26.01.2016)
  • http://www.atlintl.com/doe/teels/teel.html (27.01.2016)