3.0. In this study, on-fault slip rates that are generated by earthquakes have been estimated. On the other hand, those slip are compared with GNSS-derived relative slip rates that have been obtained from previously compiled GNSS velocity fields. Those fault-independent calculations, which have been made by mesh-grid approach, verifies that the EAF is the most prominent block boundary in the target area. GNSS-derived velocity measurements are the highest in the northeast and the lowest in the southwest along the fault zone. Those velocities go up to 12.4 mm/yr in the northwest and goes down to 4.3 mm/yr in the southwest. Overall pattern of the GNSS-derived slip rates are in correlation with the seismicity-derived on-fault slip rates. However, around 39.5°E, where the GNSS-derived slip rates are around 10.1 mm/yr, seismicity derived slip rates remains at 1.7 mm/yr in contast to relatively active adjacent fault sections. This observation suggests an “a-seismic creep” in the east of Hazar Lake, around the latitude 39.5°E. "> [PDF] Doğu Anadolu Fayı boyunca Sismik ve A-sismik Tektonik Hareketler: Hazar Gölü Doğu’sunda Sismik Boşluk mu yoksa Krip mi | [PDF] Seismic and a-seismic tectonic motions along the East Anatolian Fault: Seismic Gap or Creep in the east of Hazar Lake 3.0. In this study, on-fault slip rates that are generated by earthquakes have been estimated. On the other hand, those slip are compared with GNSS-derived relative slip rates that have been obtained from previously compiled GNSS velocity fields. Those fault-independent calculations, which have been made by mesh-grid approach, verifies that the EAF is the most prominent block boundary in the target area. GNSS-derived velocity measurements are the highest in the northeast and the lowest in the southwest along the fault zone. Those velocities go up to 12.4 mm/yr in the northwest and goes down to 4.3 mm/yr in the southwest. Overall pattern of the GNSS-derived slip rates are in correlation with the seismicity-derived on-fault slip rates. However, around 39.5°E, where the GNSS-derived slip rates are around 10.1 mm/yr, seismicity derived slip rates remains at 1.7 mm/yr in contast to relatively active adjacent fault sections. This observation suggests an “a-seismic creep” in the east of Hazar Lake, around the latitude 39.5°E. ">

Doğu Anadolu Fayı boyunca Sismik ve A-sismik Tektonik Hareketler: Hazar Gölü Doğu’sunda Sismik Boşluk mu yoksa Krip mi

Anadolu ve Afrika plakaları arasında depremsellik açısından aktif bir rol oynayan Doğu Anadolu Fayı (DAF) üzerinde ve çevresinde meydana gelen tektonik hareketler hesaplanarak fayın sismolojik ve jeodezik davranışı irdelenmiştir. Bu çalışmada, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü tarafından işletilen deprem ağı, günümüzde DAF üzerinde M 3.0 ve üzeri büyüklüklerde oldukça yüksek bir depremselliğe işaret etmektedir. Bu depremselliğin ürettiği fay üzeri kayma hızları hesaplanmıştır. Diğer taraftan, bölgede daha önce derlenmiş olan GNSS kaynaklı hız alanları göreceli yöntemle hesaplanarak, depremsellik verisiyle üretilen kayma hızlarıyla karşılaştırılmıştır. Fay bağımsız ve sadece karelaj yöntemiyle yapılan bu hesaplamalar DAF'ın bölgede en belirgin blok sınırı olduğunu göstermektedir. Fay boyunca GNSS kaynaklı hızların, kuzeydoğu en yüksek, güneybatı ise en düşük seviyelerde olduğu gözlemlenmiştir. Bu hızlar kuzeydoğuda 12.4 mm/yıl değerine ulaşırken, güneybatıda 4.3 mm/yıla kadar düşmektedir. Bu hız değerlerinin DAF boyunca örüntüsü, depremsellikle elde edilen fay üzeri hareket hızlarının fay boyu örüntüsüyle örtüşmektedir. Ancak, en yüksek değerlerin gözlendiği kuzeydoğuda, 39.5°D boylamı civarı, GNSS verileri fay boyunca 10.1 mm/yıl civarlarında kayma değerleri verirken, fay üzerindeki depremsel hareket değerleri, komşu kısımların aksine çok düşük bir değer olan 1.7 mm/yıl civarında kalmıştır. Bu gözlem, 39.5°D boylamı civarı Hazar Gölü'nün doğusunda DAF üzerinde "A-sismik krip" karakterinde bir tektonik harekete işaret etmektedir

Seismic and a-seismic tectonic motions along the East Anatolian Fault: Seismic Gap or Creep in the east of Hazar Lake

Seismic and geodetic behavior of the East Anatolian Fault (EAF), which plays a major role regarding earthquake activity between Anatolian and African plates, has been investigated analyzing surrounding tectonic motions. Nation-wide seismic network, operated by Kandilli Observatory and Earthquake Research Institute (KOERI), indicates relatively a high earthquake activity along the EAF above M>3.0. In this study, on-fault slip rates that are generated by earthquakes have been estimated. On the other hand, those slip are compared with GNSS-derived relative slip rates that have been obtained from previously compiled GNSS velocity fields. Those fault-independent calculations, which have been made by mesh-grid approach, verifies that the EAF is the most prominent block boundary in the target area. GNSS-derived velocity measurements are the highest in the northeast and the lowest in the southwest along the fault zone. Those velocities go up to 12.4 mm/yr in the northwest and goes down to 4.3 mm/yr in the southwest. Overall pattern of the GNSS-derived slip rates are in correlation with the seismicity-derived on-fault slip rates. However, around 39.5°E, where the GNSS-derived slip rates are around 10.1 mm/yr, seismicity derived slip rates remains at 1.7 mm/yr in contast to relatively active adjacent fault sections. This observation suggests an “a-seismic creep” in the east of Hazar Lake, around the latitude 39.5°E.

___

  • Aktar, M., Dorbath, C., Arpat, E., 2004. The seismic velocity and fault structure of the Erzincan basin, Turkey, using local earthquake tomography. Geophys. J. Int. 156, 497–505.
  • Aki, Keiiti; Richards, Paul G. (2002). Quantitative seismology (2 ed.). University Science Books. ISBN 0-935702-96-2.
  • Aksoy, E., Incegöz, M. ,Kocyigit, A., 2007. Lake Hazar Basin: a negative flower structure on the East Anatolian Fault System (EAFS), SE Turkey. Turk. J. Earth Sci. 16, 319–338.
  • Aktug, B., Lenk, O., Gürdal, M.A., Kilicoglu, A., 2009. Establishment of regional reference frames for detecting active deformation areas in Anatolia. Stud. Geophys. Geod. 2 (53), 169–183.
  • Aktug, B., Parmaksız, E., Kurt, M., Lenk, O., Kılıcoglu,A., Gürdal, M. A., Özdemir, S., 2013. Deformation of Central Anatolia: GPS implications. J. Geodyn. 67, 78–96.
  • Aktuğ, B., Özener, H., Doğru, A., Sabuncu, A., Turgut, B., Halıcıoğlu, Yılmaz, O., Havazli, E. (2016). Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field, Journal of Geodynamics, 94-95, 1-12.
  • Alchalbi, A., Daoud, M., Gomez, F., et al., 2009. Crustal deformation in northwestern Arabia from GPS measurements in Syria: slow slip rate along the northern Dead Sea Fault. Geophys. J. Int. 180, 125– 135.
  • Allen, M., Jackson, J., Walker, R., 2004. Late Cenozoic reorganization of the Arabia–Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics 23 (1), TC2008.
  • Arpat, E., Saraglu, F., 1972. The East Anatolian Fault System: thoughts on its development. Min. Res. Explor. Inst. Turkey Bull. 78, 33–39.
  • Barka, A. A., Kadinsky-Cade, K., 1988. Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonophysics 7, 663–684
  • Bingol, E. (1989), Geological map of Turkey (Scale: 1/2.000.000), General Directorate of Mineral Research and Exploration (MTA), Ankara, Turkey
  • Bulut, F., Bohnhoff, M., Aktar, M., Dresen, G. Characterization of aftershock-fault plane orientations of the 1999 İzmit (Turkey) earthquake using high-resolution aftershock locations (2007) Geophysical Research Letters, 34 (20), art. no. L20306.
  • Bulut, F., Bohnhoff, M., Eken, T., Janssen, C., Kl, T., Dresen, G. The East Anatolian Fault Zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations (2012) Journal of Geophysical Research B: Solid Earth, 117 (7), art. no. B07304.
  • Cavalié, O., and S. Jónsson (2014), Block-like plate movements in eastern Anatolia observed by InSAR, Geophys. Res. Lett., 41, 26–31, doi:10.1002/ 2013GL058170.
  • Dilek, Y., and Sandvol, E., 2009, Seismic structure, crustal architecture and tectonic evolution of the Anatolian-African Plate Boundary and the Cenozoic Orogenic Belts in the Eastern Mediterranean Region: Geological Society, London, Special Publications, v. 327, p. 127-160.
  • Dewey, J.F. ,Hempton, M. R., Kidd, W. S. F., Saroglu,F., Sengör, A. M. C., 1986. Shortening of continental lithosphere: the neotectonics of eastern Anatolia: a young collision zone. In: Coward, M.P., Ries, A.C. (Eds.), Collision Tectonics. Geol. Soc. Lond. Spec. Publ. 19, 3–36.
  • Hanks, T. C., and H. Kanamori (1979), A moment magnitude scale, J. Geophys. Res., 84(B5), 2348– 2350, doi:10.1029/JB084iB05p02348.
  • Hempton, M.R., 1985. Structure and deformation history of the Bitlis sture near Lake Hazar, south easternTurkey. Geol.Soc.Am.Bull. 96, 233–243.
  • Herece, E., Akay, E., 1992. Karlıova-C ̧ elikhan arasında Dogu Anadolu Fayı. In: Proceeding of the 9th Petroleum Congress of Turkey, Ankara, Turkey, 17–21, February 1992, pp. 361–372.
  • Reilinger, R., et al., 2006. GPS constraints on continental deformation in the Africa–Arabia Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. 111, B05411.
  • Reinen, L.A., 2000. Seismic and aseismic slip indicators in serpentinite gouge. Geology 28, 135– 138.
  • Sengör, A.,Görür, N.,Saroglu,F.,1985.Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle, K., Christie-Blick, N. (Eds.), Strike-Slip Deformation, Basin Formation and Sedimentation, Vol. 37. Spec. Publ. SEPM Soc. Sediment. Geol., SEPM, pp. 227– 264.
  • Westaway, R., 1994. Present-day kinematics of the Middle East and Eastern Mediterranean. J. Geophys. Res. 99, 12071–12090.
  • Vanacore, E. A., Taymaz, T., and Saygin, E.: Moho structure of the Anatolian Plate from receiver function analysis, Geophys. J. Int., 193, 329–337, 2013.
  • Yolsal-Cevikbilen, S., Biryol, C.B., Beck, S., Zandt, G., Taymaz, T., Adıyaman, H.E. and Ozacar, A.A. (2012). 3-D crustal structure along the North Anatolian Fault Zone in north-central Anatolia revealed by local earthquake tomography. Geophysical Journal International, 188 (3), 819-849.
  • 1-http://udim.koeri.boun.edu.tr/zeqdb, (01.02.2017)
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ