Oda Sıcaklığında Kür Edilen Granüle Yüksek FırınCürufluGeopolimer Harçların Fiziksel ve Mekanik Özelliklerinin Araştırılması

Bu çalışmada granüle yüksek fırın cürufunun (GYFC) geopolimer harç üretiminde bağlayıcı ve agrega olarak kullanılabilirliği araştırılmıştır. Harç üretimi sırasında en az enerji tüketimi hedeflenmiş  ve etüv kürü yerine oda sıcaklığında kür gerçekleştirilmiştir. Likit/Bağlayıcı (l/b)olarak 1 ve 0.7 olmak üzere iki farklı oran belirlenmiştir. Alkali aktivatör olarak NaOH ve SS (2:1, 1:2, 3:0, 0:3) dört farklı oranda kullanılmıştır. Harç üzerinde deneyler 28. günden sonra gerçekleştirilmiştir. Numuneler üzerinde basınç dayanımı, eğilme dayanımı, su emme, görünür porozite, birim hacim ağırlık, XRD, XRF, SEM ve EDX analiz ve deneyleri gerçekleştirilmiştir. Sonuç olarak GYFC agrega ve öğütülmüş GYFC bağlayıcı ile oda sıcaklığında kür edilmiş  geopolimer harç üretiminin mümkün olduğu ortaya konmuştur. Deney sonuçlarına göre en yüksek eğilme dayanım değeri (5.1MPa)2:1 oranında NaOH ve SS içerikli ve l/b oranın 0.7 olduğu harçlarda elde edilmiştir. En yüksek basınç dayanımı değeri (29.1MPa)3:0 oranında NaOH içerikli ve l/b oranın 0.7 olduğu harçlarda elde edilmiştir.

The Investigation of Physical and Mechanical Properties of Geopolymer Mortars with Granulated Blast Furnace Slag Cured at Room Temperature

In this study, the usage of granulated blast furnace slag (GBFS) as binder and aggregate in the manufacture of geopolymer mortar was investigated. For reduced energy consumption in production and the curing was applied at room temperature instead of oven curing. Liquid/Binder (l/b) ratios were determined in two different ratio as 1 and 0.7. Alkaline activators such asNaOH and SS (2:1, 1:2, 3:0, 0:3)were used in four different rates. Experiments were performed on mortar after 28-days. Compressive strength, flexural strength, water absorption, apparent porosity, bulk density, XRD, XRF, SEM and EDX analysis and tests were performed on the samples. As a result, it was concluded that it is possible to manufacture geopolymer mortar with GBFS aggregate and grounded GBFS binder with curing at room temperature. According to the finding, the highest flexural strength value (5.1 MPa) was obtained from the mortar samples with 2:1 NaOH and SS content and l/b ratio for 0.7. The highest compressive strength values (29.1 MPa) were obtained from the mortar samples with a 3:0 NaOH content and l/b for 0.7.

___

  • Atiş, C.D., Görür, E.B., Karahan, O., Bilim, C., İlkentapar, S.andLuga, E., 2015. Veryhighstrength (120 MPa) class F flyashgeopolymermortaractivated at differentNaOHamountheatcuringtemperatureandhe atcuringduration. Construction andBuildingMaterials, 96, 673-678.
  • Badar, M. S.,Kupwade-Patil, K., Bernal, S. A., Provis, J. L. andAllouche, E.N., 2014. Corrosion of steelbarsinducedbyacceleratedcarbonation in lowandhighcalciumflyashgeopolymerconcretes. Construction andBuildingMaterials, 61, 79-89.
  • Bagheri, A. and Nazari, A., 2014. Compressivestrength of highstrengthclass C flyash- basedgeopolymerswithreactivegranulatedblastfurna ceslagaggregatesdesignedbyTaguchimethod.Material sand Design, 54, 483-490.
  • Bakharev, T., 2005. Durability of geopolymermaterials in sodiumandmagnesiumsulfatesolutions. CementandConcreteResearch, 35:6, 1233-1246.
  • Bakharev T., 2005b. Resistance of geopolymermaterialstoacidattack. CementandConcreteResearch, 35:4, 658-670.
  • Bernal, S. A.,Provis, J.L., Walkley, B., Nicolas, R.S., Gehmanc, J.D., Brice, D.G., Kilcullen, A.R., Duxson, P.andVan Deventer, J.S.J., 2013. Gel nanostructure in alkali-activatedbindersbased on slagandflyash, andeffects of acceleratedcarbonation. CementandConcreteResearch, 53, 127-144.
  • Bobiric?, C.,Shim, J., Pyeon J. and Park, J., 2015. Influence of wasteglass on themicrostructureandstrength of inorganicpolymers. Ceramics International,41, 13638-13649.
  • Cheng T.W. andChiu J.P., 2003. Fire- resistantgeopolymerproducedbygranulatedblastfurn aceslag, MineralsEngineering, 16, 205-210.
  • Chindaprasirt, P.,Chareerat, T., Hatanaka S. andCao T., 2010. High-Strengthgeopolymerusingfinehigh- calciumflyash, Journal Of MaterıalsIn Cıvıl Engıneerıng, 23:3, 264-270.
  • Davidovits, J., 1994. Globalwarmingimpact on thecementandaggregatesindustries. World Resource Review, 6, 263.
  • Deb, S.P.,Nath P., Sarker, P.K., 2014.Theeffects of groundgranulatedblast- furnaceslagblendingwithflyashandactivatorcontent on theworkabilityandstrengthproperties of geopolymerconcretecured at ambienttemperature, Materialsand Design,62, 32-39.
  • Dimas, D.,Giannopoulou, I. andPanias, D., 2009. Polymerization in sodiumsilicatesolutions: a fundamentalprocess in geopolymerizationtechnology, J.MaterSci., 44, 3719- 3730.
  • Duxson, P. andProvis, J. L., 2008. Designingprecursorsforgeopolymercements, J. Am. Ceram. Soc.,91:12, 3864-3869.
  • Hwang C. andHuynh T., 2015. Effect of alkali- activatorandricehuskashcontent on strengthdevelopment of flyashandresidualricehuskash-basedgeopolymers, Construction andBuildingMaterials, 101, 1-9. Lloyd N.A. andRangan B.V., 2010.
  • Geopolymerconcretewithflyash. 2nd International Conference on Sustainable Construction Materialsand Technologies, 1493-1504.
  • Marjanovi?, N.,Komljenovi?, K., Ba??arevi?, Z., Nikoli?, V. andPetrovi?, R., 2015. Physical- mechanicalandmicrostructuralproperties of alkali- activatedflyash-blastfurnaceslagblends. Ceramics International, 41, 1421-1435.
  • Ng T.S.,Voo Y.L. andFoster S.J., 2012. Sustainabilitywithultrahigh- performanceandgeopolymerconcreteconstruction, innovativematerialsandtechniques in concreteconstruction. M.N. Fardis (Ed.), ACES Workshop, Springer, Dordrecht, 81-100.
  • Oh, J.E.,Monteiro, P.J.M., Jun, S.S, Choi, S. andClark, S.M., 2010. Theevolution of strengthandcrystallinephasesfor alkali- activatedgroundblastfurnaceslagandflyash- basedgeopolymers. CementandConcreteResearch. 40, 189-196.
  • Öcal Y., 2014. Demir Çelik Sektöründe Atık Yönetimi. Uzmanlık Tezi,TC Kalkınma Bakanlığı, Ankara, 176.
  • Pacheco-Torgal, F.,Labrincha, J., Leonelli, C., Palomo, A., andChindaprasit, P. (Eds.), 2014. Handbook of alkali- activatedcements, mortarsandconcretes. Elsevier, 777-805.
  • Pal, S.C.,MukherjeeandA., Pathak, S.R., 2003. Investigation of hydraulicactivity of groundgranulatedblastfurnaceslag in concrete. CementandConcreteResearch, 33, 1481-1486.
  • Park, J. and Kim, Y., 2014. Improvement in mechanicalpropertiesbysupercriticalcarbonation of non-cementmortarusingflyashandblastfurnaceslag. InternatıonalJournal Of PrecısıonEngıneerıngAndManufacturıng, 15: 6, 1229- 1234.
  • Provis, J.L. and Van Deventer J.S.J., 2009. Geopolymers: structures, processing, properties, andindustrialapplications. Woodhead Publishing Limited, 15-136.
  • Rao, G. M.,andRao, T. G., 2015. Final setting time andcompressivestrength of flyashandggbs- basedgeopolymerpasteandmortar. ArabianJournalforScienceandEngineering, 40:11, 3067-3074.
  • Richardson, I.G.,Brough, A.R., Groves, G.W., Dobson, C.M., 1994. Thecharacterization of hardened alkali- activatedblast-furnaceslagpastesandthenature of thecalciumsilicatehydrate (C-S-H) phase. CementandConcreteResearch, 24: 5, 813-829.
  • Schilling, P.J.,Roy, A., Eaton, H.C., Malone P.G. andBrabston, N.W., 1994. Microstructure, strength, andreactionproducts of groundgranulatedblast- furnaceslagactivatedbyhighlyconcentratedNaOHsolu tion,Journal of MaterialsResearch, 9, 188-197.
  • Shi, C., 2004. Steel slag-itsproduction, processing, characteristics, andcementitiousproperties. J Mater CivEng, 16, 230-236.
  • Swanepoel, J. C. andStrydom, C. A., 2002. Utilisation of flyash in a geopolymericmaterial, AppliedGeochemistry, 17, 1143-1148.
  • Şahin İ., 2015. Demir Çelik Sektörü. İktisadi Araştırmalar Bölümü, Türkiye İş Bankası.
  • Tang, S.W.,Yao, Y., Andrade, C. andLi, Z.J., 2015. Recentdurabilitystudies on concretestructure. CementandConcreteResearch,78, 143-154.
  • TS EN 196-1. 2002. Çimento Deney Metotları Bölüm 1: Dayanım.
  • TS EN 771-1. 2005. Kagir Birimler, Özellikler- Bölüm 1: Kil kâgir birimler (Tuğlalar).
  • TS EN 772-4., 2000. Kagir Birimler, deney metotları Bölüm 4: Tabii taşkâgir birimlerin toplam ve görünen porozitesi ile boşluksuz ve boşluklu birim hacim kütlesinin tayini.
  • Wang S. andScrivener, K.L., 1995. Hydrationproducts of alkali activatedslagcement. CementandConcreteResearch, 25: 3, 561-571.
  • Wang, K., He, H., Song, X. andCui, X., 2015. Effects of themetakaolin-basedgeopolymer on high- temperatureperformances of geopolymer/PVC compositematerials. AppliedClayScience, 114, 586- 592.
  • Xu, H.,Gong, W., Syltebo, L., Izzo, K., Lutze, W. andPegg, I.,L., 2014. Effect of blastfurnaceslaggrades on flyashbasedgeopolymerwasteforms. Fuel, 133, 332- 340.