Ni2VAl Bileşiğinin Mekanik, Elastik ve Termodinamik Özelliklerinin İncelenmesi

Bu çalışmada teknolojik öneme haiz Heusler ailesinden Ni2VAl bileşiğinin yapısal, mekanik ve termo dinamik özellikleri ilk prensipler yöntemi ile teorik olarak incelenmiştir. Öncelikle bileşiğin temel durumunu ve en düşük enerji seviyesini belirlemek için yapısal optimizasyon yapılmış, yapısal optimizasyon neticesinde elde edilen optimize parametreler kullanılarak elastik sabitler hesaplanmıştır. Hesaplanan örgü parametresi önceki çalışmalar ile uyum içeresindedir. Ayrıca belirlenen elastik sabitler mekanik kararlılık kriterlerini karşıladığından elastik modül, Vicker sertliği, erime sıcaklığı, Debye sıcaklığı, ses hızları, minimum termal iletkenlik ve anizotropi incelenmiştir. Çalışılan malzemenin Vicker sertliği ve sünek/kırılgan doğası analiz edilmiştir. Ayrıca iç enerji, titreşim enerjisi, entropi ve özgül ısı kapasitesi 0-800 K sıcaklık aralığında değerlendirilmiştir. Hesaplamalarda açık kaynak Quantum Espresso yazılımı ve bu yazılım ile dağıtımı yapılan thermo_pw paketi tercih edilmiştir. Yapılan çalışma ile Ni2VAl bileşiğinin mekanik kararlı, sünek, anizotrop ve yumuşak olduğu görüldü.

Investigation of Mechanical, Elastic and Thermodynamic Properties of Ni2VAl Compound

In this study, the structural, mechanical, and thermodynamic properties of Ni2VAl compound from Heusler family, which has technological importance, were investigated theoretically by first principles method. Firstly, structural optimization was performed to determine the ground state and lowest energy level of the compound, and elastic constants were calculated using the optimized parameters obtained as a result of structural optimization. The calculated lattice parameter agrees with previous studies. In addition, elastic modulus, Vicker hardness, melting temperature, Debye temperature, sound velocities, minimum thermal conductivity and anisotropy were investigated since the determined elastic constants meet the mechanical stability criteria. The Vicker hardness and ductile/brittle nature of the studied material were analyzed. In addition, internal energy, vibrational energy, entropy, and specific heat capacity were evaluated in the temperature range of 0-800 K. In calculations, open-source Quantum Espresso software and thermo_pw package distributed with this software were preferred. With the study, it was seen that the Ni2VAl compound was mechanically stable, ductile, anisotropic, and soft.

___

  • Anderson, O. L. 1963. A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7):, 909–917. https://doi.org/10.1016/0022-3697(63)90067-2
  • Arıkan, N., Özturk, A. İ. 2021. Ag2ScAl Bileşiğinin Mekanik ve Termodinamik özelliklerinin Ab İnitio Hesabı. Kadirli Uygulamalı Bilimler Fakültesi Dergisi.
  • Beckstein, O., Klepeis, J. E., Hart, G. L. W., Pankratov, O. 2001. First-principles elastic constants and electronic structure of α−Pt2 Si and PtSi. Physical Review B, 63(13):, 134112. https://doi.org/10.1103/PhysRevB.63.134112
  • Buessem, D. H., Chung, W. R. 1968. Anisotropy in Single-Crystal Refractory Compounds (F. W. Vahldiek, & S. A. Mersol, Ed.), Boston, MA, : Springer US. https://doi.org/10.1007/978-1-4899-5307-0
  • Cahill, D. G., Watson, S. K., Pohl, R. O. 1992. Lower limit to the thermal conductivity of disordered crystals. Physical Review B, 46(10):, 6131. https://doi.org/10.1103/PhysRevB.46.6131
  • Chen, X.-Q., Niu, H., Li, D., Li, Y. 2011. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 19(9):, 1275–1281. https://doi.org/10.1016/j.intermet.2011.03.026
  • Clarke, D. R. 2003. Materials selections guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 163–164:, 67–74. https://doi.org/10.1016/S0257-8972(02)00593-5
  • da Rocha, F. S., Fraga, G. L. F., Brandão, D. E., da Silva, C. M., Gomes, A. A. 1999. Specific heat and electronic structure of Heusler compounds Ni2TAl (T=Ti, Zr, Hf, V, Nb, Ta). Physica B: Condensed Matter, 269(2):, 154–162. https://doi.org/10.1016/S0921-4526(99)00102-7
  • Everhart, W., Newkirk, J. 2019. Mechanical properties of Heusler alloys. Heliyon, 5(5):, e01578. https://doi.org/10.1016/j.heliyon.2019.e01578
  • Every, A. G. 1980. General closed-form expressions for acoustic waves in elastically anisotropic solids. Physical Review B, 22(4):, 1746. https://doi.org/10.1103/PhysRevB.22.1746
  • Fine, M. E., Brown, L. D., Marcus, H. L. 1984. Elastic constants versus melting temperature in metals. Scripta Metallurgica, 18(9):, 951–956. https://doi.org/10.1016/0036-9748(84)90267-9
  • Fischer, T. H., Almlof, J. 1992. General methods for geometry and wave function optimization. The Journal of Physical Chemistry, 96(24):, 9768–9774. https://doi.org/10.1021/j100203a036
  • Gaillac, R., Pullumbi, P., Coudert, F.-X. 2016. ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter, 28(27):, 275201. https://doi.org/10.1088/0953-8984/28/27/275201
  • Gencer, A., Surucu, G. 2019. Investigation of structural, electronic and lattice dynamical properties of XNiH (X = Li, Na and K) perovskite type hydrides and their hydrogen storage applications. International Journal of Hydrogen Energy, 44(29):, 15173–15182. https://doi.org/10.1016/j.ijhydene.2019.04.097
  • Giannozzi, P., Baroni, S., Bonini, N., ve arkadaşları. 2009. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 21(39):. https://doi.org/10.1088/0953-8984/21/39/395502
  • Kokalj, A. 2003. Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Computational Materials Science : Computational Materials Science (C. 28), Elsevier: , 155–168. https://doi.org/10.1016/S0927-0256(03)00104-6
  • Long, J., Shu, C., Yang, L., Yang, M. 2015. Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation. Journal of Alloys and Compounds, 644:, 638–644. https://doi.org/10.1016/J.JALLCOM.2015.04.229
  • Luo, H., Xin, Y., Liu, B., Meng, F., Liu, H., Liu, E., Wu, G. 2016. Competition of L21 and XA structural ordering in Heusler alloys X2CuAl (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni). Journal of Alloys and Compounds, 665:, 180–185. https://doi.org/10.1016/j.jallcom.2015.11.207
  • Niinomi, M. 2002. Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A, 33(3):, 477–486. https://doi.org/10.1007/S11661-002-0109-2
  • Nye, J. 1985. Physical properties of crystals: their representation by tensors and matrices, New York, : Oxford University Press.
  • Özer, T. 2018. Determination of melting temperature. Ed.: H. Demirkaya, M. Canbulat, A. Pulur, M. Eraslan, B. Direkci (Ed.), Kyrenia-TRNC, : 4 th International Congress on Multidisciplinary Studies: , 87–99.
  • Petit, A. T., Dulong, P. L. 1819. Recherches sur quelques points importans de la théorie de la chaleur. Annales de chimie et de physique : Annales de chimie et de physique, Paris, : , 395–413.
  • Ranganathan, S. I., Ostoja-Starzewski, M. 2008. Universal Elastic Anisotropy Index. APS, 101(5):. https://doi.org/10.1103/PhysRevLett.101.055504
  • Schreiber, E. 1973. Elastic constants and their measurement, New York, : McGraw-Hill Book Company.
  • Shi, J., Zheng, A., Lin, Z., Chen, R., Zheng, J., Cao, Z. 2019. Effect of process control agent on alloying and mechanical behavior of L21 phase Ni–Ti–Al alloys. Materials Science and Engineering: A, 740–741:, 130–136. https://doi.org/10.1016/j.msea.2018.10.097
  • Sreenivasa Reddy, P. V., Kanchana, V. 2014. Ab initio study of Fermi surface and dynamical properties of Ni2XAl (X = Ti, V, Zr, Nb, Hf and Ta). Journal of Alloys and Compounds, 616:, 527–534. https://doi.org/10.1016/j.jallcom.2014.07.020
  • Staiger, M. P., Pietak, A. M., Huadmai, J., Dias, G. 2006. Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 27(9):, 1728–1734. https://doi.org/10.1016/j.biomaterials.2005.10.003
  • Tian, Y., Xu, B., Zhao, Z. 2012. Microscopic theory of hardness and design of novel superhard crystals. International Journal of Refractory Metals and Hard Materials, 33:, 93–106. https://doi.org/10.1016/J.IJRMHM.2012.02.021
  • Wang, Y.-K., Tung, J.-C. 2020. Structural, electronic and magnetic properties of Ni2XAl (X= V, Cr, Mn, Fe, and Co) Heusler alloys: An ab initio study. Physics Open, 2:, 100008. https://doi.org/10.1016/j.physo.2019.100008
  • Wen, Z., Zhao, Y., Hou, H., Wang, B., Han, P. 2017. The mechanical and thermodynamic properties of Heusler compounds Ni2XAl (X = Sc, Ti, V) under pressure and temperature: A first-principles study. Materials & Design, 114:, 398–403. https://doi.org/10.1016/j.matdes.2016.11.005
  • Yousef, E. S., El-Adawy, A., El-KheshKhany, N. 2006. Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3 ) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Communications, 139(3):, 108–113. https://doi.org/10.1016/J.SSC.2006.05.022