CdSeTe Kuantum Noktaları ile Bromo Krezol Mor Kombinasyonunun Spektrofotometrik Değerlendirmesi

Kuantum noktalar (QDs) sahip oldukları benzersiz optik ve elektronik özellikleri ile son yıllarda birçok farklı teknolojik alanda popüler hale gelmişlerdir. Bu durum QD'lar ile organik bileşiklerin etkileşimine olan ilgiyi arttırmaktadır. Bu çalışmada bu ilgiye temel alarak, CdSeTe QD'lar ile Brom Krezol Moru (BCP) kloroform içerisinde oda sıcaklığın da etkileşimini ve CdSeTe QDs/BCP yapısının spektroskopik olarak karakterizasyonu açıklamayı amaçlamıştır. Bu amaç doğrultusunda CdSeTe QDs/ BCP oluşumunun etkileşimleri spektroskopik olarak Fourier dönüşümlü kızılötesi spektroskopisi (FTIR), absorbans ve emisyon üzerinden karakterizasyon çalışmaları yapılmıştır. BCP'nin CdSeTe QD'lar ile hibritleşmesiyle QDs'nin lüminesans pikinde 19 kat azalma tespit edilmiştir. Bununla birlikte Brom Krezol Moru (BCP) ile hibritleşen CdSeTe QD'lar BCP'nin soğurma özelliğini 112.8 katına kadar arttırmıştır.

Spectrophotometric Evaluation of Combination of CdSeTe Quantum Dots and Bromocresol Purple

Quantum dots (QD) have been used in many different technological fields in recent years with their unique optical and electronic features. This increases the relevance to hybrid structures compatible with QDs. In this study, CdSeTe QDs and Bromocresol Purple (BCP) hybridized in chloroform in a very short time of room temperature and CdSeTe QD / BCP hybrid structures were created. The interactions of synthesized CdSeTe QD / BCP hybrid structures were examined by FT-IR and absorbance and emission characterization studies were carried out. A 19-fold reduction in the luminescence peak of QD was detected by hybridizing BCP with CdSeTe QDs. However, CdSeTe QDs hybridized to BCP increased the absorbance property of BCP up to 112.8 times.

___

  • Algar, W. R., Tavares, A. J., & Krull, U. J. (2010). Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Analytica Chimica Acta, 673(1), 1–25. https://doi.org/10.1016/j.aca.2010.05.026
  • Amelia, M., Lincheneau, C., Silvi, S., & Credi, A. (2012). Electrochemical properties of CdSe and CdTe quantum dots. Chemical Society Reviews, 41(17), 5728. https://doi.org/10.1039/c2cs35117j
  • Cao, S., & Yu, J. (2016). Carbon-based H2-production photocatalytic materials. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 27, 72–99. https://doi.org/10.1016/j.jphotochemrev.2016.04.002
  • Chien, Y.-H., Huang, C.-C., Wang, S.-W., & Yeh, C.-S. (2011). Synthesis of nanoparticles: sunlight formation of gold nanodecahedra for ultra-sensitive lead-ion detection. Green Chemistry, 13(5), 1162. https://doi.org/10.1039/c0gc00915f
  • Clapp, A. R., Medintz, I. L., Mauro, J. M., Fisher, B. R., Bawendi, M. G., & Mattoussi, H. (2004). Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors. Journal of the American Chemical Society, 126(1), 301–310. https://doi.org/10.1021/ja037088b
  • Colpini, L. M. S., Alves, H. J., Santos, O. A. A. dos, & Costa, C. M. M. (2008). Discoloration and degradation of textile dye aqueous solutions with titanium oxide catalysts obtained by the sol–gel method. Dyes and Pigments, 76(2), 525–529. https://doi.org/10.1016/j.dyepig.2006.10.014 Debnath, T., Maiti, S., & Ghosh, H. N. (2016). Unusually Slow Electron Cooling to Charge-Transfer State in Gradient CdTeSe Alloy Nanocrystals Mediated through Mn Atom. Journal of Physical Chemistry Letters. https://doi.org/10.1021/acs.jpclett.6b00348
  • Dumas, E., Gao, C., Suffern, D., Bradforth, S. E., Dimitrijevic, N. M., & Nadeau, J. L. (2010). Interfacial Charge Transfer between CdTe Quantum Dots and Gram Negative Vs Gram Positive Bacteria. Environmental Science & Technology, 44(4), 1464–1470. https://doi.org/10.1021/es902898d
  • Elibol, E. (2020). Synthesis of near unity photoluminescence CdSeTe alloyed Quantum Dots. Journal of Alloys and Compounds, 817, 152726. https://doi.org/10.1016/j.jallcom.2019.152726
  • ELİBOL, E., & DEMİRCİ, T. (2020). An Investigation The Spectroscopic Charactarization Of Alloy Cdsete Quantumdots/ Bromophenol Blue Hybrid Associates. Sakarya University Journal of Science, 25(1), 200–211. https://doi.org/10.16984/saufenbilder.729891
  • Elibol, E., & Tutkun, N. (2019). Improving CdTe QDSSC’s performance by Cannula synthesis method of CdTe QD. Materials Science in Semiconductor Processing, 93, 304–316. https://doi.org/10.1016/j.mssp.2019.01.014
  • Gupta, S. K., Singh, D. P., Tripathi, P. K., Manohar, R., Varia, M., Sagar, L. K., & Kumar, S. (2013). CdSe quantum dot-dispersed DOBAMBC: an electro-optical study. Liquid Crystals, 40(4), 528–533. https://doi.org/10.1080/02678292.2012.761735
  • Hill, P. G., & Wells, T. N. C. (1983). Bromocresol Purple and the Measurement of Albumin: Falsely High Plasma Albumin Concentrations Eliminated by Increased Reagent Ionic Strength. Annals of Clinical Biochemistry: An International Journal of Biochemistry and Laboratory Medicine, 20(5), 264–270. https://doi.org/10.1177/000456328302000503
  • Jamieson, T., Bakhshi, R., Petrova, D., Pocock, R., Imani, M., & Seifalian, A. M. (2007). Biological applications of quantum dots. Biomaterials, 28(31), 4717–4732. https://doi.org/10.1016/j.biomaterials.2007.07.014
  • Kang, T., Um, K., Park, J., Chang, H., Lee, D. C., Kim, C.-K., & Lee, K. (2016). Minimizing the fluorescence quenching caused by uncontrolled aggregation of CdSe/CdS core/shell quantum dots for biosensor applications. Sensors and Actuators B: Chemical, 222, 871–878. https://doi.org/10.1016/j.snb.2015.09.036
  • Klude, M., Passow, T., Heinke, H., & Hommel, D. (2002). Electro-Optical Characterization of CdSe Quantum Dot Laser Diodes. Physica Status Solidi (B), 229(2), 1029–1032. https://doi.org/10.1002/1521-3951(200201)229:2
  • Kurzweilová, H., & Sigler, K. (1993). Fluorescent staining with bromocresol purple: A rapid method for determining yeast cell dead count developed as an assay of killer toxin activity. Yeast, 9(11), 1207–1211. https://doi.org/10.1002/yea.320091107
  • Lesiak, A., Drzozga, K., Cabaj, J., Bański, M., Malecha, K., & Podhorodecki, A. (2019). Optical Sensors Based on II-VI Quantum Dots. Nanomaterials, 9(2), 192. https://doi.org/10.3390/nano9020192
  • Orlova, A. O., Maslov, V. G., Baranov, A. V., Gounko, I., & Byrne, S. (2008). Spectral-luminescence study of the formation of QD-sulfophthalocyanine molecule complexes in an aqueous solution. Optics and Spectroscopy, 105(5), 726–731. https://doi.org/10.1134/S0030400X08110131
  • Rakovich, A., Rakovich, T., Kelly, V., Lesnyak, V., Eychmüller, A., Rakovich, Y. P., & Donegan, J. F. (2010). Photosensitizer Methylene Blue-Semiconductor Nanocrystals Hybrid System for Photodynamic Therapy. Journal of Nanoscience and Nanotechnology, 10(4), 2656–2662. https://doi.org/10.1166/jnn.2010.1376
  • Razmi, H., & Mohammad-Rezaei, R. (2013). Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: Application to sensitive glucose determination. Biosensors and Bioelectronics, 41, 498–504. https://doi.org/10.1016/j.bios.2012.09.009
  • Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., & Nann, T. (2008). Quantum dots versus organic dyes as fluorescent labels. Nature Methods, 5(9), 763–775. https://doi.org/10.1038/nmeth.1248
  • Schmelz, O., Mews, A., Basché, T., Herrmann, A., & Müllen, K. (2001). Supramolecular Complexes from CdSe Nanocrystals and Organic Fluorophors. Langmuir, 17(9), 2861–2865. https://doi.org/10.1021/la0016367
  • Shi, L., Rosenzweig, N., & Rosenzweig, Z. (2007). Luminescent Quantum Dots Fluorescence Resonance Energy Transfer-Based Probes for Enzymatic Activity and Enzyme Inhibitors. Analytical Chemistry, 79(1), 208–214. https://doi.org/10.1021/ac0614644
  • Smirnov, M. S., Ovchinnikov, O. V., Taidakov, I. V., Ambrozevich, S. A., Vitukhnovskii, A. G., Zvyagin, A. I., & Uskov, G. K. (2018). Luminescent Properties of Hybrid Nanostructures Based on Quantum Dots of CdS, Europium 1,3-Diketonate, and Methylene Blue Molecules. Optics and Spectroscopy, 125(2), 249–255. https://doi.org/10.1134/S0030400X18080210
  • Snee, P. T., Somers, R. C., Nair, G., Zimmer, J. P., Bawendi, M. G., & Nocera, D. G. (2006). A Ratiometric CdSe/ZnS Nanocrystal pH Sensor. Journal of the American Chemical Society, 128(41), 13320–13321. https://doi.org/10.1021/ja0618999
  • Süslü, İ., & Tamer, A. (2002). Spectrophotometric determination of enoxacin as ion-pairs with bromophenol blue and bromocresol purple in bulk and pharmaceutical dosage form. Journal of Pharmaceutical and Biomedical Analysis, 29(3), 545–554. https://doi.org/10.1016/S0731-7085(02)00105-X
  • Yao, W., & Byrne, R. H. (2001). Spectrophotometric Determination of Freshwater pH Using Bromocresol Purple and Phenol Red. Environmental Science & Technology, 35(6), 1197–1201. https://doi.org/10.1021/es001573e
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ