Fren Süspansiyon Test Cihazı Tasarımı ve İmalatı

Bu çalışmada taşıtların farklı yol şartlarındaki fren‐süspansiyon testlerinin laboratuvar ortamında

___

  • Albatlan S. A. A., (2015).” Effect of Hydraulic Brake Pıpe Inner Diameter on Vehıcle Dynamics”, International Journal of Automotive Technology, .Vol. 16, .No.2, pp. 231‐237
  • Belhocine A. and Bouchetara M., (2012).”Thermal behavior of full and ventilated disc brakes of vehicles”, Journal of Mechanical Science and Technology, Vol. 26 No. 11, pp. 3643‐3652
  • Chung W. S., Jung S. P. and Park T. W., (2010).”Numerical analysis method to estimate thermal deformation of a ventilated disc for automotives”, Journal of Mechanical Science and Technology, Vol. 24, No. 11, pp. 2189‐2195
  • Gemalmayan, N. (1984) “Sürtünme Malzemelerinin Özelliklerinin Deneysel İncelenmesi.”, Gazi University, Phd Thesis.
  • Hamersma H. A. and Els P. S., (2014)”Improving the braking performance of a vehicle with ABS and a semi‐active suspension system on a rough road”, Journal of Terramechanics, Vol. 56, pp. 91‐101
  • Hwan, P. J. Oh, C. J. Rae, K. H., (2010)“Friction characteristics of brake pads with aramid fiber and acrylic fiber.” Ind. Lubr. Tribol. 62:91–8.
  • Jang, H. Jin, K. S., (2000) “The effects of antimony trisulfide (Sb2S3) and zirconium silicate (ZrSiO4) in the automotive brake friction material on friction characteristics.” Wear 239:229–36.
  • Kchaou, M. Sellami, A. Elleuch, R. (2013) “Singh H. Friction characteristics of a brake friction material under different braking conditions.”, Mater Des 52:533–40.
  • Kumar, M, Bijwe J. (2010) “Studies on reduced scale tribometer to investigate the effects of metal additives on friction coefficient– temperature sensitivity in brake materials”. Wear, 269:838–46.
  • Mutlu, F. Eldogan, I. Findik, O., (2006) “Tribological properties of some phenolic composites suggested for automotive brakes.”, Tribol Int 39:317–25.
  • Österle, W. Griepentrog, M. Gross, Th. Urban, I., (2001) “Chemical and microstructural changes induced by friction and wear of brakes.”, Wear 251:1469–76.
  • Öztürk, B. Öztürk, S. Ö. Adigüzel, A. A. (2013), “Effect of type and relative amount of solid lubricants and abrasives on the tribological properties of brake friction materials.”, Tribol Trans 56:428–41.
  • Poulios, K. Svendsen, G., Hiller, J. Klit, P. (2013) “Coefficient of Friction Measurements for Thermoplastics and Fibre Composites Under Low Sliding Velocity and High Pressure.” Tribol. Lett. 51: 191‐198.
  • Rakesh, K. K., Bhabani, S. K. (2014) “Synergistic effect of tungsten disulfide and cenosphere combination on braking performance of composite friction materials.”, Mater Des 56:368–78.
  • Reinsch, E. W. (1970) “Sintered Metal Brake Linings For Automotive Applications.”, Delcooraine division, General Motors corp. Dayton, s. 2, 9‐21.
  • Sellami, A. Kchaou, M. Elleuch, R. Cristol, A. L. Desplanques, Y., (2014) “Study of the interaction between microstructure, mechanical and tribo‐performance of a commercial brake lining material.” Materials and Design, s. 59, 84 ‐ 93.
  • Straffelini, G. Maines, L., (2013) “The relationship between wear of semimetalic friction materials and pearlitic cast iron in dry sliding.”, Wear, s. 307, 75 ‐ 80.
  • Wu, Y. Jin, H. Li, Y. Ji, Z. Hou, S., (2014) “Simulation of Temperature Distribution in Disk Brake Considering a Real Brake Pad Wear” Tribol. Lett. 56: 205–213
  • Xiao, G. Zhu, Z., (2010) “Friction materials development by using DOE/RSM and artificial neural network.” Tribology International, s. 43: 218 ‐ 227.
  • Yang I. J., Choi K. and Huh K., (2012). “Development Of An Electrıc Booster System Usıng Slıdıng Mode Control For Improved Brakıng Performance”, International Journal of Automotive Technology, Vol. 13, No.6, pp. 1005–1011