Fren Süspansiyon Test Cihazı Tasarımı ve İmalatı
Bu çalışmada taşıtların farklı yol şartlarındaki fren‐süspansiyon testlerinin laboratuvar ortamında
___
- Albatlan S. A. A., (2015).” Effect of Hydraulic Brake
Pıpe Inner Diameter on Vehıcle Dynamics”,
International Journal of Automotive
Technology, .Vol. 16, .No.2, pp. 231‐237
- Belhocine A. and Bouchetara M., (2012).”Thermal
behavior of full and ventilated disc brakes of
vehicles”, Journal of Mechanical Science and
Technology, Vol. 26 No. 11, pp. 3643‐3652
- Chung W. S., Jung S. P. and Park T. W.,
(2010).”Numerical analysis method to
estimate thermal deformation of a
ventilated disc for automotives”, Journal of
Mechanical Science and Technology, Vol. 24,
No. 11, pp. 2189‐2195
- Gemalmayan, N. (1984) “Sürtünme Malzemelerinin
Özelliklerinin Deneysel İncelenmesi.”, Gazi
University, Phd Thesis.
- Hamersma H. A. and Els P. S., (2014)”Improving the
braking performance of a vehicle with ABS
and a semi‐active suspension system on a
rough road”, Journal of Terramechanics, Vol.
56, pp. 91‐101
- Hwan, P. J. Oh, C. J. Rae, K. H., (2010)“Friction
characteristics of brake pads with aramid
fiber and acrylic fiber.” Ind. Lubr. Tribol.
62:91–8.
- Jang, H. Jin, K. S., (2000) “The effects of antimony
trisulfide (Sb2S3) and zirconium silicate
(ZrSiO4) in the automotive brake friction
material on friction characteristics.” Wear
239:229–36.
- Kchaou, M. Sellami, A. Elleuch, R. (2013) “Singh H.
Friction characteristics of a brake friction
material under different braking
conditions.”, Mater Des 52:533–40.
- Kumar, M, Bijwe J. (2010) “Studies on reduced
scale tribometer to investigate the effects of
metal additives on friction coefficient–
temperature sensitivity in brake materials”.
Wear, 269:838–46.
- Mutlu, F. Eldogan, I. Findik, O., (2006) “Tribological
properties of some phenolic composites
suggested for automotive brakes.”, Tribol Int
39:317–25.
- Österle, W. Griepentrog, M. Gross, Th. Urban, I.,
(2001) “Chemical and microstructural
changes induced by friction and wear of
brakes.”, Wear 251:1469–76.
- Öztürk, B. Öztürk, S. Ö. Adigüzel, A. A. (2013),
“Effect of type and relative amount of solid
lubricants and abrasives on the tribological
properties of brake friction materials.”,
Tribol Trans 56:428–41.
- Poulios, K. Svendsen, G., Hiller, J. Klit, P. (2013)
“Coefficient of Friction Measurements for
Thermoplastics and Fibre Composites Under
Low Sliding Velocity and High Pressure.”
Tribol. Lett. 51: 191‐198.
- Rakesh, K. K., Bhabani, S. K. (2014) “Synergistic
effect of tungsten disulfide and cenosphere
combination on braking performance of
composite friction materials.”, Mater Des
56:368–78.
- Reinsch, E. W. (1970) “Sintered Metal Brake
Linings For Automotive Applications.”, Delcooraine
division, General Motors corp.
Dayton, s. 2, 9‐21.
- Sellami, A. Kchaou, M. Elleuch, R. Cristol, A. L.
Desplanques, Y., (2014) “Study of the
interaction between microstructure,
mechanical and tribo‐performance of a
commercial brake lining material.” Materials
and Design, s. 59, 84 ‐ 93.
- Straffelini, G. Maines, L., (2013) “The relationship
between wear of semimetalic friction
materials and pearlitic cast iron in dry
sliding.”, Wear, s. 307, 75 ‐ 80.
- Wu, Y. Jin, H. Li, Y. Ji, Z. Hou, S., (2014) “Simulation
of Temperature Distribution in Disk Brake
Considering a Real Brake Pad Wear” Tribol.
Lett. 56: 205–213
- Xiao, G. Zhu, Z., (2010) “Friction materials
development by using DOE/RSM and
artificial neural network.” Tribology
International, s. 43: 218 ‐ 227.
- Yang I. J., Choi K. and Huh K., (2012). “Development
Of An Electrıc Booster System Usıng Slıdıng
Mode Control For Improved Brakıng
Performance”, International Journal of
Automotive Technology, Vol. 13, No.6, pp.
1005–1011