Nano Ölçekli Koyu Siyah Renkli TZP (Tetragonal Zirkonya Polikristal) Tozlarının Tek Kademede Hidrotermal Yöntemle Üretilmesi
Bu çalışmanın temel amacı, ilk kez ileri teknoloji malzeme üretim tekniklerini kullanarak homojen renkdağılımlı ve üstün mekanik özelliklere sahip siyah renkte ZrO 2 seramik malzemesinin üretiminisağlamaktır. Bu amaçla Fe, Co, Ni, Mn içeren geçiş metal oksitleri (Fe, Co, Ni, Mn) kullanılarak Al 2 O 4spinel yapıya sahip ıtriyum katkılı zirkonya başlangıç tozu hidrotermal yöntemle ikinci bir prosese ihtiyaçduyulmadan tek aşamada sentezlenmiş ve düşük sinterleme sıcaklığında kararlı siyah ZrO 2 seramiklerinüretimi sağlanmıştır. Böylelikle maliyetin azalması ile birlikte siyah renkte ZrO 2 kristallerinde homojenrenk dağılımı gözlenmiştir. Ayrıca, tek kademede sentezlenen siyah renkteki ZrO 2 tozlarını granül halegetirilmeden önce katkı malzemelerinin ilavesi ile seramik üretimini gerçekleştirmek amacıyla uygunteknik ile şekillendirilip, yüksek tokluk ve sertlik değerlerinde üretilebilirliği araştırılmıştır. Deneyselsonuçlar ile siyah renkli ZrO 2 numunesine ait ortalama tokluk değerinin 11 MPa.m 1/2 ve sertlik değerininise 9.5 GPa olduğu kanıtlanmıştır. Bu değerler, siyah renkli ZrO 2 üretiminde yapılan literatür çalışmalarıarasında en yüksek değeri göstermektedir. Bu yüzden, yüksek aşınma direnci, sertlik gerektirenuygulamalar ve ağır yük altında çalışabilecek alternatif seramik malzeme olarak kabul edilebilir.
Nano-Sized Dark Black Colored TZP (Tetragonal Zirconia Polycrystal) Powders Produced by One-Step Hydrothermal Method
The basic purpose of this current research is, for the first time, to provide the production of black colored ZrO 2 ceramic material possessing homogeneous colored distribution and superior mechanic properties through state-of-the-art hydrothermal processing route. For this aim, nano-sized black- colored yttrium doped ZrO 2 starting powders bearing transition metal oxide e.g., Fe, Co, Ni and Mn were successfully in a one-step resulting for stable tetragonal (t) zirconia phase. Thus, homogeneous color distribution into black-colored ZrO 2 crystals were obtained with low cost. Granulation of synthesized black-colored zirconia powders were shaped with cold isostatic pressing (CIP) technique to enhance bulk ceramic body. After pressureless sintering, high toughness and hardness values were recorded from the sintered samples. Here, average toughness value of black ZrO 2 sample was 11 MPa.m 1/2 and hardness was 9.5 GPa. Based on the mechanical properties to the best of author’s knowledge, production of black colored zirconia with high mechanical properties was the first study in the literature. We, therefore, believe that this material can be considered as alternative ceramic material to use applications requiring high abrasion resistance, hardness and under heavy load.
___
- Caruta, B. M., 2006, Ceramics and Composite Materials:
New Research, Nova Science Publishers Inc., 77-78.
- Coric, D., Renjo, M., Curkovic, L., 2017. Vickers
indentation fracture toughness of Y-TZP dental ceramic.
International Journal of Refractory Metals and Hard
Materials, 64, 14-19.
- Fernandez-Osorio, A., Ramos-Olmos, L., Julian ,C.F.,
2014. Black nanocrystalline cubic zirconia: Manganese-
stabilized c-ZrO2 prepared via the solegel method.
Materials Chemistry and Physics, 147, 796-803.
- Fujisaki, H., Shunan-shi, 2007, patent US 2007/0270304
A1.
- Graeve, O. A., 2008, Ceramic and Glass Materials:
Structure, Properties and Processing, Shackelford, J.,
Doremus, R.H., 169-170.
- Gremillard L., Epiciir T., Chevalier J., Fantozzi G., 2000.
Microstructural Study of Silica-Doped Zirconia Ceramics.
Acta mater., 48, 4647–4652.
- Gonzalo-Juan, I., Ferrari, B., Colomer, M.T., 2009.
Influence of the urea content on the YSZ hydrothermal
synthesis under dilute conditions and its role as
dispersant agent in the post-reaction medium. Journal of
the European Ceramic Society, 15, 3185-3195.
- Kelly J.R, Denry I., 2008. Stabilized zirconia as a
structural ceramic: An overview. Dental Materials, 24,
289-298.
- Leon, A.B., Morikawa, Y., Kawahara M., Mayo J., 2002.
Fracture toughness of nanocrystalline tetragonal
zirconia with low yttria content. Acta Materialia, 50,
4555-4562.
- Mazaheri, M., Simchi, A., Golestani-Fard, F., 2008.
Densification and grain growth of nanocrystalline 3Y-TZP
during two-step sintering. Journal of the European
Ceramic Society, 28, 2933-2939.
- Mclaren, E.A.,Giordano, R.A., 2005. Zirconia based
ceramics: Material Properties, Esthetics, and Layering
Techniques of a New Veneering Porcelain, VM9.
Quintessence of Dental Technology, 28, 99-11.
- Ouahdi, N., Guillemet, S., Demai, J.J., Durand, B., Er
Rakho, L., Moussa R. and Samdi, A., 2005. Investigation
of the Reactivity of AlCl3 and CoCl2 Toward Molten
Alkali-Metal Nitrates in Order to Synthesize CoAl2O4.
Materials Letters, 59, 2-3, 334-340.
- Qian, F., Xıe Z., Sun, J., Wang F., 2011. Preparation of
Black-Colored Zirconia Ceramics via Heterogeneous Precipitation. Journal Of The Chinese Ceramic Society,
39, 8, 1290-1294.
- Vasylkiv, O., Sakka, Y., Skorokhod, V.V., 2005. Features
of preparing nano-sized powders of tetragonal
zirconium dioxide stabilized with yttrium. Powder
Metall Met. C, 44, 5-6, 228-239.
- Wang, W., Liu, W., Yang, X., Xie, Z., 2012. Fabrication Of
Black-Colored
CuO-Al2O3-ZrO2
Ceramics
via
Heterogeneous
Nucleation
Method.
Ceramics
International, 38, 2851-2856.
- Wang, W., Xie, Z., Liu, G. ve Yang, W., 2009. Fabrication
Of Blue-Colored Zirconia Ceramics via Heterogeneous
Nucleation Method. American Chemical Society, 9,
4373-4377.
- Witek S.R., Butler E.P., 1986. Zirconia particles
coarsening and the effect of zirconia additions on the
mechanical properties of certain commercial aluminas.
J. Am. Ceram. Soc.,69, 523-529.