Cu(II), Ni(II), Co(II) ve Fe(II) Metaloftalosiyanintetrasülfonat Modifiye Kalem Ucu Elektrotlar ile Elektrokimyasal Dopamin Tayini

Bu çalışmada dopamin tayinlerinde kullanılmak amacıyla kalem ucu elektrot (KUE) yüzeyi Cu(II), Ni(II),Co(II) ve Fe(II) metaloftalosiyanintetrasülfonatlar ile modifiye edilmiştir. Modifiye elektrotlarkullanılarak 0,50mM dopamin içeren Britton-Robinson tamponunda (BRT) pH değeri 2,0 ile 9,0 arasındadönüşümlü voltametrik olarak yükseltgenme akım değerleri belirlenmiştir. En yüksek akım değerineCu(II) ftalosiyanintetrasülfonat ile modifiye edilmiş KUE ile (KUE/CuFSTS) BRT içinde pH 2,0’deulaşılmıştır. KUE ile kıyaslandığında KUE/CuFSTS ile elde edilen pik akımı % 30 daha fazladır. Ayrıcaoldukça düşük dopamin derişimleri için pik akımında çok daha yüksek iyileşme tespit edilmiştir. Örneğin10 µM’lık dopamin içeren BRT içinde (pH 2,0) KUE’ye kıyasla diferansiyel puls voltametrisi (DPV) ile eldeedilen yükseltgenme pik akımındaki artış 7 kattır. KUE/CuFSTS elektrotlarının performansınaadsorpsiyon süresinin etkisi de incelenmiş ve en uygun adsorpsiyon süresinin 5 dakika olduğubulunmuştur. 5 dakikalık adsorpsiyon süresiyle elde edilen elektrotların (KUE/CuFSTS-5dk)elektrokimyasal karakterizasyonu akımın difüzyon kontrollü olduğunu göstermiştir. KUE/CuFSTS-5dkelektroduna ait analitik parametreler DPV kullanılarak çalışılmıştır. DPV ölçümleri dopamin tayini içinbelirlenen eğrinin 4,0-250 µM derişimleri aralığında doğrusal olduğunu göstermiştir. Dopamin için tayinsınırı 1,3 µM (1,3 x 10-6 M) olarak bulunmuştur. Modifiye elektrotların yeniden üretilebilirliğinin bağılstandart sapması % 4,25’dir. Elde edilen sonuçlar geliştirilen modifiye elektrodun dopamin tayinlerindekullanılabilme potansiyelinin yüksek olduğunu göstermektedir.

Electrochemical Dopamine Determination by Cu(II), Ni(II), Co(II) and Fe(II) Metallophthalocyaninetetrasulfonate Modified Pencil Graphite Electrodes

In this study, pencil graphite electrode (PGE) surface was modified by Cu(II), Ni(II), Co(II) and Fe(II) metallophthalocyaninetetrasulfonates for determination of dopamine. Cyclic voltammetric oxidation current values were determined by using the modified electrodes in the Britton-Robinson buffer solution (BRT) containing 0.50 mM dopamine at the pH range of 2.0 and 9.0. The highest current value was obtained with Cu(II) phthalocyaninetetrasulfonate modified PGE (PGE/CuFSTS) in BRT at pH 2.0. The oxidation peak current value of PGE/CuFSTS is 30% higher than that of unmodified one (PGE). In addition, at very low dopamine concentrations, high peak current improvement was observed. For instance, the oxidation peak current increase obtained by using differential pulse voltammetry (DPV) is 7 fold higher than that of PGE in the BRT (pH 2.0) containing 10 µM dopamine. The effect of adsorption time on the performance of PGE/CuFSTS electrodes was also investigated and the optimum adsorption time was found as 5 minutes. The electrochemical characterization of the electrodes obtained for the 5 minutes of adsorption time (KUE/CuFSTS-5min) showed that the current was diffusion controlled. Analytical parameters of the PGE/CuFSTS-5min electrode were investigated by using DPV. DPV measurements showed that the curve for dopamine determinations are linear in the range of 4.0-250 µM. The detection limit for dopamine is 1.3 µM (1.3 x 10-6 M). The reproducibility of the modified electrodes is 4.25% (RSD). The obtained results show that the developed modified electrode has a high potential to use for dopamine detection.

___

  • Alencar, W.S., Crespilho, F.N., Santos, M.R.M.C., Zucolotto, V., Oliveira, O.N., Silva, W.C., 2007. Influence of film architecture on the charge-transfer reactions of metallophthalocyanine layer-by-Layer films, Journal of Physical Chemistry C, 111, 12817– 12821.
  • Barrera, C., Zhukov, I., Villagra, E., Bedioui, F., Páez, M.A., Costamagna, J. ve Zagal, J.H., 2006. Trends in reactivity of unsubstituted and substituted cobaltphthalocyanines for the electrocatalysis of glucose oxidation. Journal of Electroanalytical Chemistry, 589, 212-218.
  • David, I.G., Popa, D.-E. and Buleandra, M., 2017. Pencil graphite electrodes: A versatile tool in electroanalysis, Journal of Analytical Methods in Chemistry, Volume 2017, Article ID 1905968, 22 pages.
  • Deon, M., Caldas, E.M.,da Rosa D.S., de Menezes, E.W., Dias, S.L.P., Pereira, M.B., Costa,T.M.H., Arenas, L.T., Benvenutti, E.V., 2015. Mesoporous silica xerogel modified with bridged ionic silsesquioxane used to immobilize copper tetrasulfonated phthalocyanine applied to electrochemical determination of dopamine. Journal of Solid State Electrochemistry, 19, 2095–2105.
  • Demuru, S. Nela, L., Marchack, N., Holmes, S.J., Farmer, D.B., Tulevski, G.S., Lin, Q., and Deligianni, H., 2018. Scalable nanostructured carbon electrode arrays for enhanced dopamine detection, ACS Sensors, 3, 799- 805.
  • Geraldo, D. A., Togo, C. A., Limson, J. ve Nyokong, T., 2008. Electrooxidation of hydrazine catalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc. Electrochimica Acta, 53, 8051- 8057.
  • Goux, A., Bedioui, F., Robbiola, L., Pontie, M., 2003. Nickel tetraaminophthalocyanine based films for the electrocatalytic activation of dopamine. Electroanalysis, 15, 969-974.
  • Kumara Swamy, B. E., Venton, B. J, 2007. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotoninin vivo, Analyst, 132, 876-884.
  • Malem F., Mandler D., 1993. Self-Assembled monolayers in electroanalytical chemistry: Application of mercapto carboxylic acid monolayers for the electrochemical detection of dopamine in the presence of a high concentration of ascorbic acid, Analytical Chemistry, 65, 37–41.
  • Manjunatha, R., Suresh, G.S., Melo, J.S., D’Souza, S.F., Venkatesha, T.V., 2010. Simultaneous determination of ascorbic acid, dopamine and uric acid using polystyrene sulfonate wrapped multiwalled carbon nanotubes bound to graphite electrode through layer-by-layer technique, Sensors Actuators B, 145(2), 643–650.
  • Obirai, J., Bedioui, F., Nyokong T., 2005. Electro-oxidation of phenol and its derivatives on poly-Ni(OH)TPhPyPc modified vitreous carbon electrodes, Journal of Electroanalytical Chemistry, 576, 323-332.
  • Özcan, L., Altuntaş, M., Büyüksağiş,A., Türk H. Yurdakal, S., Electrochemical Determination of bisfenol A with pencil graphite electrodes modified with Co(II), Ni(II), Cu(II) and Fe(II) phthalocyaninetetrasulfonates. Analytical Sciences, 3, 881-886.
  • Pillay, J., Ozoemena, K.I., 2007. Electrochemical properties of surface-confined films of single-walled carbon nanotubes functionalised with cobalt(II)tetraaminophthalocyanine: Electrocatalysis of sulfhydryl degradation products of V-type nerve agents. Electrochimica Acta, 52, 3630-3640.
  • Santos, C.S., Ferreira, R.T., Calixto, C.M.F., Rufino, J.L., Garcia, J.R., Fujiwara, S.T., Wohnrath, K., Pessoa, C.A. 2014, The influence of organization of LbL films containing a silsesquioxane polymer on the electrochemical response of dopamine, Journal of Applied Electrochemistry, 44, 1047–1058.
  • Tapsoba, I., Bourhis, S., Feng, T., Pontie, M., 2009. Sensitive and selective electrochemical analysis of methyl-parathion (MPT) and 4-Nitrophenol (PNP) by a new type p-NiTSPc/p-PPD coated carbon fiber microelectrode (CFME). Electroanalysis, 21, 1167- 1176.
  • Xue, C., Han, Q., Wang, Y., Wu, J., Wen, T., Wang, R., Hong, J., Zhou, X., Jiang, H., 2013. Amperometric detection of dopamine in human serumby electrochemical sensor based on gold nanoparticles doped molecularly imprinted polymers. Biosensors and Bioelectronics, 49, 199-203.
  • Weber, J.H. ve Busch, D.H., 1965. Complexes derived from strong field ligands. XX. The effect of extraplanar ligands on the properties of transition metal 4,4',4",4'"-tetrasulfophthalocyanines. Inorganic Chemistry, 4, 472-475.
  • Wu D., Li Y., Zhang Y., Wang P., Wei Q., Du B., 2014. Sensitive electrochemical sensor for simultaneous determination of dopamine, ascorbic acid, and uric acid enhanced by amino-group functionalized mesoporous Fe3O4@Graphene sheets, Electrochimica Acta, 116, 244–249.
  • Yılmaz, S., 2012. Uygulama Örnekleriyle Elektro Analitik Kimya, Kriter Yayınları, 2. Baskı, İstanbul.
  • Yu, D., Zeng, Y., Qi, Y., Zhou, T., Shi, G., 2012. A novel electrochemical sensor for determination of dopamine based on AuNPs@SiO2 core-shell imprinted composite. Biosensors and Bioelectronics, 38, 270- 277.
  • Zhang, D., Wu, L., Chow, D. S.-L., Tam, V. H., Rios, D. R., 2016. Quantitative determination of dopamine in human plasma by a highly sensitive LC–MS/MS assay: Application in preterm neonates, Journal of Pharmaceutical and Biomedical Analysis, 117, 227– 231.
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ