Cam Partikül Takviyeli Alüminyum Matrisli Kompozitlerin Mikrodalga Sinterleme Yöntemi ile Üretimi

Bu çalışmada, %0-20 atık cam tozları içeren aluminyum kompozit numuneler üretilmiştir. Farklıoranlarda cam tozu takviyesi içeren karışımlar yüksek devirli bilyeli öğütme işlemine maruz bırakıldıktansonra tek eksenli hidrolik presleme ile şekillendirilmiştir. Sinterleme işlemleri mikrodalga fırındagerçekleştirilmiştir. Tekrar edilebilir uygun sinterleme sıcaklıkları ev tipi bir mikrodalga fırının başarılı birşekilde modifiye edilmesi ile elde edilmiştir. Sinterleme işlemleri 550oC’de 18 dk süre ilegerçekleştirilmiştir. Kompozit numunelerin faz içerik ve mikroyapıları incelemelerinde istenmeyenarayüzey reaksiyon ürünlerine rastlanılmamıştır. Sinterleme sonrasında cam tozu katkılı numunelerdekiporozite miktarının ham durumdaki numunelere kıyasla azalması (%20 CT için %13’ten %8,5’e kadar),sinterleme işleminin göreceli başarısını göstermiştir. Artan cam partikül katkısına göre numunelerinbasma yüklemesi altındaki davranışları incelendiğinde, takviye partikül oranı artıkça basma dayanımıdeğerinin 67 MPa’dan 234 MPa’a kadar arttığı tespit edilmiştir. Bununla birlikte katkısız alüminyumunmikrosertlik değeri (53 Hv) %20 cam partikül takviyesi ile birlikte 77 Hv’ye kadar artırılmıştır.

Production of Glass Particle Reinforced Aluminum Matrix Composites by Microwave Sintering Method

In this study, aluminum composite samples containing 0-20% waste glass powders were produced. Mixtures containing different amounts of glass powder reinforcement were shaped by uniaxial hydraulic pressing after subjected to high-speed ball milling. The sintering process was carried out in the microwave oven. Controllable suitable sintering temperatures were achieved by successfully modifying a domestic microwave oven. The sintering processes were performed at 550oC for 18 minutes. During the phase and microstructure analysis of composite samples, undesirable interface reaction products were not encountered. After sintering, the amount of porosity in samples with glass powder decreased compared to the samples in the green state (from 13% to 8.5% for 20% CT), indicating the relative success of the sintering process. When the mechanical behaviors of the samples under compression loading were examined, it was determine that the compressive strength values of the samples increased from 67 to 234 MPa, as fraction of the glass particles were increased. In addition, the microhardness value of pure aluminum (53 Hv) was increased to 77 Hv with 20% glass particle addition.

___

  • AL-Zubaid, A.B., Shabeeb, K.M. and Ali, A.I., 2017. Study the effect of recycled glass on the mechanical properties of green concrete. Energy Procedia, 119, 680-692.
  • Arabani, M., Mirabdolazimi, S.M. and Ferdowsi, B., 2012. Modeling the fatigue behaviors of glasphalt mixtures. Scientia Iranica, 19, 3, 341-345.
  • Chockalingam, S. and Traver, H.K., 2010. Microwave sintering of β-SiAlON–ZrO2 composites. Materials & Design, 31, 8, 3641-3646.
  • Erüz, C., Liman, Y., Çakır, B., Özşeker, K., 2010. DoğuKaradeniz Kıyılarında Katı Atık Kirliliği, Türkiye’nin Kıyı ve Deniz Alanları, VIII. Ulusal Kongresi, L. BALAS (Editör) 27 Nisan-1 Mayıs, Trabzon, 1495-1501.
  • Exposito A. and Velasco F., 2018. Municipal solid-waste recycling market and the European 2020 Horizon Strategy: A regional efficiency analysis in Spain. Journal of Cleaner Production, 172, 938-948.
  • Jamaludin, S.B., Hadipramana, J., Wahid, M.F.M., Hussin, K., Rahmat, A., 2013, Microstructure and Interface Analysis of Glass Particulate Reinforced Aluminum Matrix Composite. Advanced Materials Research, 795, 578-581.
  • Kim, E.H., Cho, G.H., Lee, J.H., Jung, Y.G., Yoo, Y.S. and Seo, S.M., 2013. Fabrication and mechanical properties of metal matrix composite with homogeneously dispersed ceramic particles. Ceramics International, 39, 6503–6508.
  • Kumar YC, M., Shankar, U., 2012. Evaluation of Mechanical Properties of Aluminum Alloy 6061-Glass Particulates reinforced Metal Matrix Composites. International Journal of Modern Engineering Research, 2, 5, 3207-3209.
  • Leparoux S., Vaucher S., Beffort O., 2003. Sintering of Al/SiC and for in-situ Synthesis of TiC. Advanced Engineering Materials, 5, 6, 449-453.
  • Mallikarjuna, B.E, Shivanand, H.K., Reddy, H. and Ahamadsab M.H., 2017. Evaluation of Impact Properties of Fly Ash and S-Glass Reinforced Al-4046 Hybrid Metal Matrix Composites. Materials Today: Proceedings, 4, 12285-12290.
  • Marinel, S. and Savary, E., 2009. In situ measurement of the shrinkage during microwave sintering. Journal of Materials Processing Technology, 209, 10, 4784-4788.
  • Matli.P.R., Shakoor, R.A., Mohamed, A.M.A. and Gupta, M., 2016. Microwave Rapid Sintering of Al-Metal Matrix Composites: A Review on the Effect of Reinforcements, Microstructure and Mechanical Properties. Metals, 6, 143, 1-19.
  • Moghadam, A.D., Ferguson, J.B., Schultz, B.F. and Rohatgi, P.K., 2016. In-situ reactions in hybrid aluminum alloy composites during incorporating silica sand in aluminum alloy melts. AIMS Materials Science, 3(3), 954-964.
  • Mondal A., Agrawal D. and Upadhyaya A., 2009. Microwave heating of pure copper powder with varying particle size and porosity. Journal Microwave Power and Electromagnetic Energy, 43(1), 5-10.
  • O'Donnell, G. and Looney, L., 2001. Production of aluminium matrix composite components using conventional PM technology. Materials Science and Engineering: A, 303(1–2), 292-301.
  • Oghbaei M. and Mirzaee O., 2010. Microwave versus conventional sintering: A review of fundamentals, advantages and applications. Journal of Alloys and Compounds, 494, 1–2, 175-189.
  • Ondrusova, D., Domcekova S., Pajtasova, M., Dubec A., Micicova, Z., Pecusova, B., 2017. Alternative Filler Based on the Waste from Glass Production and its Effect on the Rubber Properties. Procedia Engineering, 177, 462-469.
  • Pattnayak, A., Madhu, N., Panda, A.S., Sahoo, M.K. and Mohanta K., 2018. A Comparative study on mechanical properties of Al-SiO2 composites fabricated using rice husk silica in crystalline and amorphous form as reinforcement. Materials Today: Proceedings, 5, 8184-8192.
  • Pavithra, H.S. and Anantha Prasad M.G., 2018. Study on Microstructure and Mechanical Properties of Al/SiO2/C hybrid metal matrix composite, with the Influence of Chills. Materials Today: Proceedings, 5(2), 1, 6053-6058.
  • Prasad, D. S., Shoba, C., Ramanaiah, N., 2014. Investigations on mechanical properties of aluminum hybrid composites. Journal of Materials Research and Technology, 3, 1, 79-85.
  • Rogatgi, P.K., Pai, B.C. and Panda, S.C., 1979. Preparation of cast aluminum-silica particulate composites. Journal of Materials Science, 14, 2277-2283.
  • Sayuti, M., Baharudin, B.T. H. T., Arifin, M.K.A., Sulaiman, S. and Vijayaram, T.R., 2012. Composites and Their Properties., Ning Hu (ed.), INTECH Open Access Publisher, 411-436.
  • Scalenghe, R., 2018. Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options. Heliyon, 4, 12, e00941, 1-39.
  • Shukla, M., Ghosh, S., Dandapat, N., Mandal, A.K. and Balla V.K., 2016. Comparative Study on Conventional Sintering with Microwave Sintering and Vacuum Sintering of Y2O3-Al2O3-ZrO2 Ceramics. Journal of Materials Science and Chemical Engineering, 4, 71-78.
  • Singh, J. and Chauhan, A., 2016. Characterization of hybrid aluminum matrix composites for advanced applications – A review. Journal of Materials Research and Technology, 5(2), 159-169.
  • Sulaiman, S., Sayuti, M. and Samin, R., 2008. Mechanical properties of the as-cast quartz particulate reinforced LM6 alloy matrix composites. Journal of Materials Processing Technology, 201, 731–735.
  • Sunil, B.R., Sivaprahasam, D. and Subasri, R., 2010. Microwave sintering of nanocrystalline WC–12Co: Challenges and perspectives. International Journal of Refractory Metals and Hard Materials, 28, 2, 180-186.
  • Torralba, J.M., da Costa, C.E., Velasco, F., 2003. P/M aluminum matrix composites: an overview. Journal of Materials Processing Technology, 133, 203-206.
  • Vijayaram, T.R. and Baskaralal, V. P. M., 2016. A Review on the Processing Methods, Properties and Applications of Metal Matrix Composites. International Journal of Engineering Research and Technology, ISSN 0974-3154, 9(1), 45-51.
  • Walczak, P., Malolepszy, J., Reben, M., Szymanski, P. and Rzepa K., 2015. Utilization of Waste Glass in Autoclaved Aerated Concrete. Procedia Engineering, 122, 302-309.
  • Zheng R.R., Wu Y., Liao S.L., Wang W.Y., Wang W.B and Wang A.H., 2014. Microstructure and mechanical properties of Al/(Ti,W)C composites prepared by microwave sintering. Journal of Alloys and Compounds, 590, 168–175.
  • Zuhailawati, H., Samayamutthirian, P. and Haizu C.H.M., 2007. Fabrication of Low Cost of Aluminium Matrix Composite Reinforced with Silica Sand. Journal of Physical Science, 18(1), 47–55.
  • https://www.researchgate.net/publication/32900071 9 (08.01.2019)
  • http://www.johnsrefuse.com/blog/bid/148981/GlassWhat-is-and-isn-t-Recyclable (06.01.2019)
  • https://www.mass.gov/files/documents/2016/ 08/pq/pocket-guide-2003.pdf (06.01.2019)
  • https://www.nrel.gov/docs/legosti/old/5703.pdf (08.01.2019)