Çift Diziler için ??-İstatistiksel ?-Yakınsaklık

Bu makalede, tam sayı ikilileri için verilen yoğunluk kavramının bir genelleştirilmesi olan ?? doğal yoğunluk kavramını tanımladık. Bu yoğunluk kavramı yardımıyla çift diziler için ??-istatistiksel ?-yakınsaklık kavramı tanıtıldı. Daha sonra bu tip yakınsaklığın temel özellikleri incelendi. Ayrıca, ?-anlamında ??-istatistiksel alt limit ve üst limit kavramlarını tanımladık. Son olarak bu kavramlarla ilgili teoremler verdik.

??-Statistical ?-Convergence for Double Sequences

In this article, we define the concept of αβ natural density which is a generalization of the naturaldensity concept given for pairs of integer. The concept of ??-statistical ?-convergence is introducedwith the help of this density. After that some elementary properties of this type of convergence areexamined. Also, we define the notions of ??-statistical limit inferior and superior in ?-sense. Finally wegive some theorems related to them.

___

  • Aktuğlu, H. 2014. Korovkin type approximation theorems proved via ??-statistical convergence. Journal of Computational and Applied Mathematics, 259, 174--181.
  • Boos, J., Leiger, T. and Zeller, K. 1997. Consistency theory for SM-methods. Acta Mathematica Hungarica, 76, 83--116.
  • Çakan, C. and Altay, B. 2006. Statistically boundedness and statistical core of double sequences. Journal of Mathematical Analysis and Applications, 317, 690--697.
  • Edely, O. H. H. and Mursaleen, M. 2006. Tauberian theorems for statistically convergent double sequences. Information Sciences, 176, 875--886.
  • Fast, H. 1951. Sur la convergence statistique. Colloquium Mathematicum, 2, 241--244.
  • Fridy, J. A. and Orhan, C. 1997. Statistical limit superior and limit inferior. Proceedings of the American Mathematical Society, 125(12), 3625--3631.
  • Hardy, G. H. 1917. On the convergence of certain multiple series. Mathematical Proceedings of the Cambridge Philosophical Society, 19, 86--95.
  • Karaisa, A. 2016. Statistical ??-summability and Korovkin type approximation theorem. Filomat, 30(13), 3483--3491.
  • Móricz, F. 2003. Statistical convergence of multiple sequences. Archiv der Mathematik (Basel), 81(1), 82--89.
  • Mursaleen, M. and Edely, O. H. H. 2003. Statistical convergence of double sequences. Journal of Mathematical Analysis and Applications, 288, 223--231.
  • Pringsheim, A. 1898. Elementare theorie der unendliche doppelreihen. Sitsungs berichte der Math. Akad. der Wissenschafftenzu Münch. Ber., 7, 101--153.
  • Sever, Y. and Talo, Ö. 2014. ?-core of double sequences. Acta Mathematica Hungarica, 144(1), 236--246.
  • Sever, Y. and Talo, Ö. 2017. Statistical ?-convergence of double sequences and its application to Korovkin type approximation theorem for functions of two variables. Iranian Journal of Science and Technology. Transaction A. Science, 41(3), 851--857.
  • Sever, Y. and Talo, Ö. 2018. On statistical ?-convergence of double sequences. Iranian Journal of Science and Technology. Transaction A. Science, 42(4), 2063--2068.
  • Zeltser, M. 2001. Investigation of double sequence spaces by soft and hard analitical methods. Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, (Tartu).
  • Zeltser, M. 2002. On conservative matrix methods for double sequence spaces. Acta Mathematica Hungarica, 95(3), 225--242.