Basınç Altında Soğutulan Sıvı Pd Elementinin Mikro Yapısal Gelişiminin Moleküler Dinamik Benzetimi ile İncelenmesi

Bu çalışmada sıvı fazdan farklı basınç değerleri altında hızlı soğutulan hacimsel (bulk) yapıdaki Paladyum (Pd) sisteminde meydana gelen mikro yapısal gelişimler Moleküler Dinamik (MD) yöntemi ile incelendi. Atomlar arasındaki etkileşme kuvvetleri çok cisim etkileşmelerini içeren Embedded Atom Metodu (EAM) kullanılarak hesaplatıldı. Model sistem içerisinde mikroyapısal değişimlerin belirlenmesi için radyal dağılım fonksiyonu (RDF), voronoi çok yüzlü analizi (VP), katlı simetrilerin belirlenmesi, küresel periyodik düzen (SPO) ve genel komşu analizi (CNA) yöntemlerinden yararlanıldı. Sıvı Pd sistemine 0-40 GPa aralığında uygulanan basınç değerleri için 1x1014 K/s soğutma hızında camsı yapı, 1x1013 K/s soğutma hızında ise kristal yapı dönüşümleri gözlendi. Ayrıca bu dönüşümlerin gerçekleştiği camsı ve kristal geçiş sıcaklıkları hesaplandı. Soğutma işlemleri sonucu elde edilen camsı yapılarda ikosahedral benzeri kısa mesafe düzenli kümeli yapıların, baskın çok yüzlü yapılar oldukları tespit edildi.

The Investigation of Microstructural Development of Liquid Pd Element Cooled under Pressure by Molecular Dynamics Simulation

Bu çalışmada sıvı fazdan farklı basınç değerleri altında hızlı soğutulan hacimsel (bulk) yapıdaki Paladyum (Pd) sisteminde meydana gelen mikro yapısal gelişimler Moleküler Dinamik (MD) yöntemi ile incelendi. Atomlar arasındaki etkileşme kuvvetleri çok cisim etkileşmelerini içeren Embedded Atom Metodu (EAM) kullanılarak hesaplatıldı. Model sistem içerisinde mikroyapısal değişimlerin belirlenmesi için radyal dağılım fonksiyonu (RDF), voronoi çok yüzlü analizi (VP), katlı simetrilerin belirlenmesi, küresel periyodik düzen (SPO) ve genel komşu analizi (CNA) yöntemlerinden yararlanıldı. Sıvı Pd sistemine 0-40 GPa aralığında uygulanan basınç değerleri için 1x1014 K/s soğutma hızında camsı yapı, 1x1013 K/s soğutma hızında ise kristal yapı dönüşümleri gözlendi. Ayrıca bu dönüşümlerin gerçekleştiği camsı ve kristal geçiş sıcaklıkları hesaplandı. Soğutma işlemleri sonucu elde edilen camsı yapılarda ikosahedral benzeri kısa mesafe düzenli kümeli yapıların, baskın çok yüzlü yapılar oldukları tespit edildi.

___

  • Ashby, M.F. and Greer, A.L., 2006. Metallic glasses as structural materials. Scripta Materialia, 54 (3), 321–326.
  • Atila, A., Ghardi, E.M., Ouaskit, S., Hasnaoui, A., 2019. Atomistic insights into the impact of charge balancing cations on the structure and properties of alumino-silicate glasses. Physical Review B, 100, 144109.
  • Bonny, G., Castin, N., Terentyev, D., 2013. Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Modelling and Simulation in Materials Science and Engineering, 21, 085004.
  • Cagin, T., Dereli, G., Uludogan, M., Tomak, M., 1999. Thermal and mechanical properties of some fcc transition metals. Physical Review B, 59(4) (1999), 3468-3472.
  • Calin, M., Gebert, A., Ghinea, A.C., Gostin, P.F., Abdi, S., Mickel, C., Eckert, J., 2013. Designing biocompatible Ti-based metallic glasses for implant applications. Materials Science Engineering C, 33, 875–883.
  • Celtek, M., Sengul, S., Domekeli, U., Canan, C., 2016. Molecular dynamics study of structure and glass forming ability of Zr70Pd30 alloy. The Europen Physical Journal B, 89(3), 65. Celtek, M., Sengul, S., Domekeli, U., Guder, V., 2021. Dynamical and structural properties of metallic liquid and glass Zr48Cu36Ag8Al8 alloy studied by molecular dynamics simulation. Journal of Non-Crystalline Solids, 566, 120890.
  • Chen, W.T., Li, S.S., Chu, J.P., Feng, K.C., Chen, J.K., 2018. Fabrication of ordered metallic glass nanotube arrays for label-free biosensing with diffractive reflectance. Biosens Bioelectron., 102, 129–135.
  • Cheng, Y.Q., Ma, E., 2011. Atomic-level structure and structure–property relationship in metallic glasses. Progress Materials Science, 56, 379-473.
  • Cheng, Y.Q., Ding, J., Ma, E., 2013. Local topology vs. atomic-level stresses as a measure of disorder: correlating structural indicators for metallic glasses. Materials Research Letters, 1, 3–12.
  • Davies, H.A., Aucote, J., Hull, J.B., 1973. Amorphous nickel produced by splat quenching. Nature, 246, 13–14. Daw, M.S., Hatcher, R.D. 1985. Application of the embedded atom method to phonons in transition metals. Solid State Communication, 56, 697-699.
  • Donald, I.W. and Davies, H.A., 1978. Prediction of glass-forming ability for metallic systems, Journal Non-Crystal Solids, 30, 77–85.
  • Erkoc, S., 1997. Empirical many-body potential energy functions used in computer simulations of condensed matter properties. Physics. Reports, 278, 79–105.
  • Frank, F.C., 1952. Supercooling of Liquids. Proceedings of the Royal Society London Series A, 215, 43.
  • Gan, Y., Sun, Z., Shen, Y., 2017. Short-pulse laser formation of monatomic metallic glass in tantalum nanowire. Applied Physics A, 123 (1), 18.
  • Greer, L.A., 1995. Metallic glasses. Science, 267, 1947–1953.
  • Grujicic, M. and Dang, P., 1995. Computer simulation of martensitic transformation in Fe-Ni face-centered cubic alloys. Materials Science and Engineering A, 201, 194-204.
  • Guellil, A.M., Adams, J.B., 1992. The application of the analytic embedded atom method to bcc metals and alloys. Journal of Materials Research, 7, 639–652.
  • Gulenko, A., Chungong, L.F., Gao, J., Todd, I., Hannon, A.C., Martin, R.A., Christie, J.K.., 2017. Atomic structure of Mg-based metallic glasses from molecular dynamics and neutron diffraction. Physical Chemistry, 19, 8504–8515.
  • Hu, Y.C., Li, F.X., Li, M.Z., Bai, H.Y., Wang, W.H., 2015. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids. Nature Communications, 6, 8310.
  • Hwang, J., 2011. Nanometer Scale Atomic Structure of Zirconium Based Bulk (Ph.D. diss.), University of Wisconsin-Madiscon.
  • Inoue, A., 2000. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 48, 279–306.
  • Jiang, D., Wen, D., Tian, Z., Liu, R., 2016. Glass formation and cluster evolution in the rapidly solidified monatomic metallic liquid Ta under high pressure. Physica A, 463, 74–181.
  • Khmich, A., Sbiaai, K., Hasnaoui, A., 2019. Structural behavior of Tantalum monatomic metallic glass. Journal Non-Crystalline Solids, 510, 81–92.
  • Kittel, C., 1996. Introduction to Solid State Physics, 7th ed., John Wiley & Sons, New York, 58-59.
  • Koch, C.C., Ovid’ko, I.A., Seal, S., Veprek, S., 2008. Structural Nanocrystalline Materials, Fundamentals and Applications, Cambridge University Press, Cambridge, 48-49.
  • Lachtiouia, Y., Kbirou, M., Saadouni, K., Sajieddine, M., Mazroui, M., 2020. Glass formation and structure evolution in the rapidly solidified monatomic metallic liquid Pt under high pressure, Chemical Physics, 538, 110805.
  • Li, H.F. and Zheng, Y.F., 2016. Recent advances in bulk metallic glasses for biomedical applications, Acta Biomater., 36, 1–20.
  • Li, Y.D., Cao, Q.L., Wang, C.C., Liu, C.S., 2011. Molecular dynamics study of structural evolution of aluminum during rapid quenching under different pressures. Physica B, 406, 3745–3751. Li, M.Z., 2014. Correlation Between Local Atomic Symmetry and Mechanical Properties in Metallic Glasses. Journal of Materials Science & Technology, 30, 551.
  • Li, M.Z., Peng, H.L., Hu, Y.C., Li, F.X., Zhang, H.P., Wang, W.H., 2017. Five-fold local symmetry in metallic liquids and glasses. Chinese Physics B, 26(1), 016104.
  • Li, X.P.,Yan, M., Schaffer, G.B., Qian, M., 2013. Abnormal crystallization in Al86Ni6Y4·5Co2La1.5 metallic glass induced by spark plasma sintering. Intermetallics, 39, 69–73.
  • Liu, R.S., Qi, D.W., Wang, S., 1992. Subpeaks of structure factors for rapidly quenched metals. Physical Review B, 45, 451–453.
  • Liu, X.J., Xu, Y., Hui, X., Lu, Z.P., Li, F., Chen, G.L., Lu, L., Liu, C.T., 2010. Metallic liquids and glasses: atomic order and global packing. Physical Review Letters, 105, 155501.
  • Liu, X.J., Xu, Y., Lu, Z.P., Hui, X., Chen, G.L., Zheng, G.P., Liu, C.T., 2011. Atomic packing symmetry in the metallic liquid and glass states. Acta Materialia, 59, 6480.
  • Louzguine-Luzgin, D.V., Belosludov, R., Saito, M., Kawazoe, Y., Inoue, A., 2008. Glass transition behavior of Ni: calculation, prediction and experiment. Journal of Applied Physics, 104, 123529.
  • Luo, Q. and Wang, W.H., 2009. Rare earth based bulk metallic glasses. Journal Non-Crystal Solids, 355, 759–775.
  • Marque´s, L.A., Pelaz, L., Aboy, M., Lopez, P., Barbolla, J., 2005. Atomistic modelling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation. Computational Material Sciences, 33, 92-105.
  • Miracle, D.B., 2004. A structural model for metallic glasses. Nature Materials, 3, 697–702.
  • Pang, H., Jin, Z.H., Lu, K., 2003. Relaxation, nucleation, and glass transition in supercooled liquid Cu. Physical Review B, 67, 094113. Parrinello, M., and Rahman, A., 1980. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Physical Review Letters, 45, 1196-1201.
  • Qi, L., Zhang, H.F., Hu, Z.Q., 2004. Molecular dynamic simulation of glass formation in binary liquid metal: Cu-Ag using EAM. Intermetallics, 12(10), 1191–1195.
  • Rigby, M., Smith, E.B., Wakeham, W.A., Maitland, G.C., 1986. The Force Between Molecules, vol. 144, Published by Oxford University Press, Clarendon Press, New York. 87-88.
  • Ryltsev, R.E., Klumov, B.A., Chtchelkatchev, N.M., 2016. Cooling rate dependence of simulated Cu64.5Zr35.5 metallic glass structure. Journal of Chemistry Physics, 145 (3), 034506.
  • Sachdev, S. and Nelson, D.R., 1985. Order in metallic glasses and icosahedral crystals Physical Review B, 32, 4592.
  • Samiri, A., Khmich, A., Hassani, A., Hasnaoui, A., 2021. Elastic and structural properties of Mg25Al75 binary metallic glass under different cooling conditions. Journal of Alloys and Compounds, 891, 161979.
  • Schroers, J., 2010. Processing of bulk metallic glass. Advanced Materials, 22 (14) 1566–1597.
  • Senkov, O.N., Cheng, Y.Q., Miracle, D.B., Barney, E.R., Hannon, A.C., Woodward, C.F., 2012. Atomic structure of Ca40+XMg25Cu35−X metallic glasses. Journal of Applied Physics, 111, 123515.
  • Shimono, M. and Onodera, H., 2001. Molecular Dynamics Study on Formation and Crystallization of Ti-Al Amorphous Alloys. Materials Science and Engineering A, 304–306, 515–519.
  • Solhjoo, S., Simchi, A., Aashuri, H., 2012. Molecular dynamics simulation of melting, solidification and remelting processes of aluminum. Iranian Journal of Science and Technology Transaction B, 36, 13–23.
  • Souza, C.A.C., Ribeiro, D.V., Kiminami, C.S., 2016. Corrosion resistance of Fe-Cr-based amorphous alloys: an overview. Journal of Non-Crystalline Solids, 442, 56–66.
  • Spaepen, F., 2000. Five-fold symmetry in liquids. Nature, 408, 781. Stukowski A., 2012. Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20, 045021.
  • Stukowski, A., 2010. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 015012.
  • Sultana, S., Manjum, M., Islam, M.M., Rahman, M.M., Mollah, M.Y.A., Susan, M.A.B.H., 2016. Transition from amorphous to crystalline state for nickel electrodeposited from an ionic liquid. Royal Society of Chemistry Advances, 6(106), 104620–104623.
  • Svoboda, R., Karabyn, V., Malek, J., Frumar, M., Benes, L., Vlcek, M., 2016. Amorphous-to-crystalline transition in Ge8Sb (2-x) BixTe11 phase-change materials for data recording. Journal of Alloy and Compounds, 674, 63–72.
  • Tian, Z.A., Liu, R.S., Liu, H.R., Zheng, C.X., Hou, Z.Y., Peng, P., 2008. Molecular dynamics simulation for cooling rate dependence of solidification microstructures of silver. Journal of Non- Crystalline Solids, 354, 3705–3712.
  • Tolpin, K.A., Bachurin, V.I., Yurasova, V.E., 2012. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nuclear Instruments and Methods in Physics Research B, 273, 76-79.
  • Trady, S., Mazroui, M., Hasnaoui, A., Saadouni, K., 2016. Molecular dynamics study of atomic-level structure in monatomic metallic glass. Journal of Non-Crystalline Solids, 443, 136–142.
  • Wang, W.H., Dong, C., Shek, C.H., 2004. Bulk Metallic Glasses. Materials Science and Engineering: R:Reports, 44, 45–89.
  • Wang, W.H., 2012. The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science, 57, 487–656.
  • Wang, A., Zhao, C., He, A., Yue, S., Chang, C., Shen, B., Li, R.W., 2016. Development of FeNiNbSiBP bulk metallic glassy alloys with excellent magnetic properties and high glass forming ability evaluated by different criterions. Intermetallics, 71, 1–6. Wei, Y.X., Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., 2005. Formation of MgNiPr bulk metallic glasses in air. Materials Letters, 59, 945–947.
  • Wendt, H.R., Abraham, F.F., 1978. Empirical Criterion for the Glass Transition Region Based on Monte Carlo Simulations. Physical Review Letters, 41, 1244.
  • Wondraczek, L., Mauro, J.C., Eckert, J., Kühn, U., Horbach, J., Deubener, J., Rouxel, T., 2011. Towards Ultrastrong Glasses. Advanced Materials, 23 (39), 4578–4586.
  • Wu, G., Liu, Y., Liu, C., Tang, Q.H., Miao, X.S., Lu, J., 2015. Novel multilayer structure design of metallic glass film deposited Mg alloy with superior mechanical properties and corrosion resistance. Intermetallics, 62, 22–26.
  • Wu, Z.W., Li, M.Z., Wang, W.H., Liu, K.X., 2013. Correlation between structural relaxation and connectivity of icosahedral clusters in CuZr metallic glass-forming liquids. Physical Review B, 88, 054202.
  • Xie, G., Zhang, W., Louzguine-Luzgin, D.V., Kimura, H., Inoue, A., 2006 Fabrication of porous Zr–Cu–Al–Ni bulk metallic glass by spark plasma sintering process. Scripta Materialia, 55 (8), 687–690.
  • Yang, W., Liu, H., Zhao, Y., Inoue, A., Jiang, K., Huo, J., Ling, H., Li, Q., Shen, B., 2014. Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity. Scientific Reports. 4, 6233.
  • Yu, P.F., Feng, S.D., Xu, G.S., Guo, X.L., Wang, Y.Y. Zhao, W., Liu, R.P., 2014. Room-temperature creep resistance of Co-based metallic glasses. Scripta Materialia, 90, 45–48.
  • Zhang, X.J., and Chen, C.L., 2012. Phonon dispersion in the Fcc metals Ca, Sr and Yb. Journal of Low Temperature Physics, 169, 40-50.
  • Zhong, L., Wang, J., Sheng, H., Zhang, Z., Mao, S.X., 2014. Formation of monatomic metallic glasses through ultrafast liquid quenching. Nature, 512, 177–180.
  • Zhou, X. W., Johnson, R. A., Wadley, H. N. G., 2004. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Physical Review B, 69, 144113.
  • http://lammps.sandia.gov/.LAMMPS (02.04.2021).
Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 2015
  • Yayıncı: AFYON KOCATEPE ÜNİVERSİTESİ