Alüminyum Metal Köpüğün Bilgisayar Destekli Mikro-CT Tomografi ile Yapısal Karakterizasyonu

Bu çalışma bilgisayarlı x-ışını mikro tomografi (μCT) metodunun temel prensiplerine bağlı matematiksel eşitlikler ve metodun metal köpük numunelere uygulanmasını kapsamaktadır. Metalik köpük malzemelerin gözenek yapısının boyut ve dağılım yönünden karakterize edilmesi mekanik, elektrik, ısıl ve korozyon gibi kullanımlarına yönelik özelliklerinin kontrol edilmesi bakımından önemlidir. Bu çalışma laboratuvar koşullarında üretilmiş alüminyum köpüklerin x-ışını mikro tomografi (μCT) tekniği ile analiz ve modelleme uygulamasının irdeleme ve sonuçlarını içermektedir. Mikro-CT tarama işlemi Tübitak Marmara Araştırma Merkezi, Malzeme Enstitüsü’nde gerçekleştirilmiştir. Kabinli x-ışını radyoskopi cihazı olarak YXLON marka Y.MU2000 DCT modeli kullanılmıştır. Tarama işlemi sırasında 200 kV, 4 mA, 1 mm filtre ve 0,4 mm odaklama parametreleri kullanılmıştır. Bu işlem sonrasında 3 farklı metal köpük morfolojisine ait tomografik görüntü ve veriler elde edilmiştir. Elde edilen veriler üzerinden mekanik özellikler sonlu elemanlar yaklaşımı ile analiz edilmiştir.

Structural Characterization of Aluminum Metal Foam by Computer Assisted Micro-CT Tomography

This study involves the computerized x-ray micro-tomography (μCT) application on metal foam samples depending on its basic principles and mathematical equations. Characterization of the pore structure of metal foam materials in terms of size and distribution is important to analyze the mechanical, electrical, thermal and corrosion properties for their use. This work covers the analysis and modeling application of x-ray micro-tomography (μCT) technique of aluminum foams produced in laboratory conditions. Micro-CT scanning was carried out at Materials Institute in TUBITAK Marmara Research Center. The YXLON brand Y.MU2000 DCT model device was used for the x-ray radioscopy. The screening was performed at 200 kV, 4 mA, 1 mm filter and 0.4 mm fading parameters. After this process, microtomographic images and data of 3 different metal foam morphology were obtained. Mechanical properties of the obtained data were analyzed by finite element approach.

___

  • Al-Athel, K.S., Aly, S.P., Arif, A.F.M., Mostaghimi, J., 2017. 3D modeling and analysis of the thermo-mechanical behavior of metal foam heat sinks, International Journal of Thermal Sciences, 116, 199-213.
  • Bock, J. and Jacobi, A.M., 2013. Geometric classification of open-cell metal foams using X-ray micro-computed tomography, Materials Characterization, 75, 35-43.
  • Doroszko, M. and Seweryn, A., 2015. Modeling of the tension and compression behavior of sintered 316L using micro computed tomography, Acta Mechanica et Automatica, 9(2), 70-74.
  • Kachelrieß, M., 2008. Micro-CT Molecular Imaging I. Handbook of Experimental Pharmacology. Springer, 23-52.
  • Köll, J., 2015. Modeling of Rigid Foams. Doctoral Thesis, Department of Aeronautical and Vehicle Engineering at KTH Royal Institute of Technology, Stockholm, Sweden, 40.
  • Kowaluk, T., Wozniak, A., 2017. A new threshold selection method for X-ray computed tomography for dimensional metrology, Precision Engineering, 50, 449-454.
  • Larner, M., Acker J., Dávila L.P., 2014. The random porous structure and mechanical response of lightweight aluminum foams, Materials Research Society, 1662(1), 201-210.
  • Li, Y., Xia, X.L., Sun, C., Ai, Q., Liu, B., Tan, H.P., 2018. Tomography-based analysis of apparent directional spectral emissivity of high-porosity nickel foams, International Journal of Heat and Mass Transfer, 118, 2018, 402-415.
  • Luetje, M., Wicke, M., Bacaicoa, I., Brueckner-Foit, A., Geisert, A., Fehlbier, M., 2017. 3D characterization of fatigue damage mechanisms in a cast aluminum alloy using X-ray tomography, International Journal of Fatigue, 103, 363-370.
  • Michailidis, N., Stergioudi, F., Omar, H, Tsipas, D.N., 2009. Investigation of the mechanical behavior of open‐cell Ni foams by experimental and FEM procedures, Advanced Engineering Materials, 10(12), 1122–1126.
  • Miedzinska, D., Szymczyk, W., 2010. Numerical and experimental study of real foam microstructure models, Journal of KONES Powertrain and Transport, 10(2), 309-314.
  • Pérez, L., Lascano, S., Aguilar, C., Domanci, D., 2015. Simplified fractal FEA model for the estimation of the Young’s modulus, Materials Design, 83, 276-283.
  • Wellington, S.L., Vinegar, H.J., 1987. Tomographic imaging of three-phase flow experiments, Review of Scientific Instrumentation, 58(1), 96-107.
  • Yu, J., Lynn, R., Tucker, T., Saldana, K., Kurfess, T., 2017. Model-free subtractive manufacturing from computed tomography data, Manufacturing Letters, 13, 44-47.