SEMİNORMLU UZAYLARDA B p F q s g DİZİ UZAYI
Bu çalışmada F f k bir modulus fonksiyon dizisi, p p k pozitif terimli bir dizi ve A a mk pozitif terimli sonsuz bir matris olmak üzere ( , , , ) B p F q s g dizi uzayı tanımlanarak, bu uzayın bazı Topolojik özellikleri ve uzayla ilgili bazı kapsama bağıntıları verilecektir.
B p F q s g Sequence Space On The Spaces With Seminorm
In this work we introduce a new ( , , , ) B p F q s g sequence space that consists of F f k a modulus function, p p k a sequence with positive terms and A a mk a matrix with positive terms, and study some topological properties of this space and some inclusion relations related to this space.
___
- Akbayır, K., 2003. Modulus fonksiyon dizileri
yardımıyla tanımlanmış bazı dizi uzayları,
Doktora Tezi, Yüzüncü Yıl Üniversitesi, Fen
Bilimler Enstitüsü. Van.
- Banerji, P.K.; Galiz, A.S., 2000. Weighted
composition operators on the modulus
function space. J.Indian Math.Soc. 67(1-4):
53-58.
- Bhardwaj, V. K., Bala, I., 2009. The sequence space
F(Xk, f, p, s) on seminormed spaces,
Tamkang J. Math. 40: 247–256
- Bilgin, T., 1994. The sequence space `(p, f, q, s) on
seminormed spaces. Bull. Calcutta Math.
Soc. 86: 295–304.
- Bilgin, T., 1996. On strong A-summability defined
by a modulus, Chinese J. Math. 24 159–166.
- Bilgin, T.,2004., Lacunary strong A-convergence
with respect to a sequence of modulus
functions, Appl. Math. Comput. 151: 595–
600.
- Bilgin, T, Altun, Y., 2007, Strongly (V λ , A, p)-
summable sequence spaces defined by a
modulus, Math. Model. and Anal. 12: 419–
424.
- Connor, J., 1989. On strong matrix summability
with respect to a modulus and statistical
convergence, Canad. Math. Bull. 32 (2):194-
198.
- Esi, A.; Et, M., 1996. Some new sequence spaces
defined by a modulus function. Pure Appl.
Math.Sci. 43(1-2): 95-99.
- Esi, A., 2000. Some new sequence spaces defined by
a modulus function. İstanbul Üniv. Fen
Fak.Mat.Derg. 55/56: 17-21.
- Gupta, j.S.; Bhola, D.K. 1975. Maximum modulus
function of entire functions defined by
Dirichlet series. İstanbul Tek. Üniv. Bül.
28(1): 32-38.
- Işik, M., 2011. Strongly almost (w, λ, q)-summable
sequences, Math. Slovaca. 61:779–788
- Karakaya, V., Şimşek N., 2004. On lacunary
invariant seuqence spaces defined by a
sequence of modulus functions, Appl. Math.
Comput. 156: 597–603.
- Kolk, E., 1990. Sequence spaces defined by a
sequence of modulus. Abstracts of Conference
Problems of pure and applied mathematics.
Tartu. 131-134.
- Kolk, E., 1997. F-seminormed sequence spaces
defined by a sequence of modulus functions
and strongly summability, Indian J. Pure
Appl.Math. 28: 1547-1566.
- Kolk, E., 1998. Inclusion relations between the
statitiscal convergence and strong
summability, Acta Et Commentationes Univ.
Tartuensis de Mathematica. 2: 39-54.
- Kolk, E., 1999. Counterexamples concerning
topologization of spaces of strongly almost
convergent sequence, Acta et
Commentations Universitatis Tartuensis de
Mathematica. 3: 63-72
- Kolk, E., 2013. On generalized sequence spaces
defined by modulus functions, Acta Et
Commentationes Univ. Tartuensis de
Mathematica. Vol 17,No 2:179 -205.
- Maddox, I. J., 1986. Sequence spaces defined by a
modulus, Math. Proc. Camb. Phil. Soc.
100:161-166.
- Nakano, H., 1953. Concave modulars. J. Math. Soc.
5:29-49.
- Pehlivan, S.; Fisher, B., 1995. Lacunary strong
convergence with respect to a sequence of
modulus functions, Comment. Math. Univ.
Carolinae. 36(1):69-76.
- Raj, K., Sharma, S. K., 2011. Difference sequence
spaces defined by a sequence of modulus
functions, Proyecciones. 30: 189–199.
- Soomer, V., 2000. On r-convex sequence spaces
defined by a modulus functions, Acta
Comment. Univ.Tartu. Math. (4): 17-22.
- Şahiner, A., 2002. Some new paranormed Spaces
defined by modulus function, Indian J. Pure
Appl. Math. 33(2): 1877-1888.