Ankara Batı Kesimi Zeminlerin Dinamik Özellikleri

Günümüzde verilerin toplanması ve analiz edilmesindeki kolaylıkları nedeniyle doğal kaynaklı sismik yöntemler mikro bölgeleme çalışmalarında tercih edilmektedir. Ankara İlinin batısında yer alan, yerleşimin hızlı arttığı Ankara Çayı yatağını oluşturan Kuvaterner çökel birimin kalınlığını, kayma dalgası hızının derinlikle değişimini ve rezonans frekansını belirlemek amacıyla 18 farklı noktada Genişletilmiş Uzamsal Öz İlişki (SPAC) yöntemi ile veriler toplanmış ve değerlendirilmiştir. Elde edilen sonuçlar araştırmaya konu olan Kuvaterner yaşlı birimin beklenenden daha kalın olduğunu ve değişken geometri sunduğunu ortaya koymuştur. Bulgular uluslararası yapı kodlarında ve yönetmeliklerinde yer alan ve jeoteknik mühendisliğinde yaygın olarak kullanılan Vs30 değerinin bu tür bölgeler için yeterli olamayacağına işaret etmektedir.

Dynamic Properties of Soils in The Western Part of Ankara

Nowadays, due to the easiness in gathering and analysing the data, natural sourced seismic methods are the preferred methods in microzonation studies. To determine the thickness and the variation of the shear wave velocity with depth and also the resonance frequency of the Quaternary sedimentary unit, forming the bed of the Ankara Stream, where settlement has been increasing rapidly in the west of the city of Ankara, Turkey, the data has been collected at 18 different points with the Extended Spatial Autocorrelation method and evaluated. Obtained results point out that the Quaternary unit, as the subject of the research, is thicker and has variable geometry. Findings indicate that the Vs30 value, included in international building codes and regulations and is widely used in geotechnical engineering, may not be sufficient for such regions. 

___

  • Aki, K. (1957). Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull. Earthq. Res. Inst. Univ. Tokyo, 35, 415 – 457.
  • Aki, K. (1965). A note on the use of microseismsin determining the shallow structures of the Earth’s crust. Geophysics, 30, 665 – 666.
  • Ankara Kalkınma Ajansı, İstatistiklerle Ankara, (2016) Raporu, Ankara.
  • Athanasopoulos, G. A. Pelekis, P. C. Leonidou, E. A. (1999). Effects of surface topography on seismic ground response in the Egion (Greece) 15 June 1995 earthquake. Soil Dynamics and Earthquake Engineering 18, 135-149.
  • Aydın, K. (2010). Ankara metro güzergâhlarında SPT – Vs korelasyonu üzerine bir çalışma, (Yayımlanmamış Y. Lisans Tezi). Gazi Üniversitesi/Fen Bilimleri Enstitüsü, Ankara, Türkiye.
  • Başokur, A. T. (Ed.) (2010). Ankara Kenti Batısındaki Zeminlerin Jeolojik-Jeofizik-Jeoteknik Özellikleri ve Dinamik Davranışı, Ankara Üniversitesi Yayınları No:270, ISBN 978-975-482-886-3.
  • Chávez-Garcia, F. J. Rodriguez, M. Stephenson, W. R. (2005). An alternative approach to the SPAC Analysis of Microtremors: Exploiting stationarity of Noise. Bulletin of the Seismological Society of America, 95:1, 277 - 293.
  • Chen, X. (1993). A systematic and efficient method of computing normal modes for multilayered half-space., Geophys. J. Int., 115, 391 - 409.
  • Cordier, J. P. (1985). Velocity of Seismic Waves, Relationships with the Theory of Elasticity, Variation Factors. In: Velocities in Reflection Seismology. Seismology and Exploration Geophysics, vol 3. Springer.
  • Dikmen, Ü. Mirzaoğlu, M. (2005). The seismic microzonation map of Yenisehir-Bursa, NW of Turkey by means of ambient noise measurements. Journal of The Balkan Geophysical Society, 8 (2), 53 – 62.
  • Dimri, V. (1992). Deconvolution and inverse theory. Application to geophysical problems. Methods in geochemistry and geophysics., Elsevier Science Publishers, Amsterdam, Vol. 29 Erol, O. (1961). Ankara bölgesinin tektonik gelişmesi. Türkiye Jeoloji Kurumu Bult., 7, 57 – 85.
  • D. S. İ 5. Bölge Baş Mühendisliği’nin Sondaj logları.
  • Friedman, J. H. Bentley, J. Finkel, R. A. (1977). An Algorithm for Finding Best Matches in Logarithmic Expected Time. ACM Transactions on Mathematical Software, 3(3), 209–226.
  • Garcia-Perez, T. Ferreira, A. M. G. Yanez, G. Iturrieta, P. Cembrano, J. (2021). Effects of topography and basins on seismic wave amplification: the Northern Chile coastal cliff and intramountainous basins, Geophys. J. Int., 227, 1143–1167.
  • Gökten, E. Baran, B. (1999). Earthquake risks of the neotectonic structures in the surrounding regions of Ankara. International Conference on Earthquake Hazard and Risk in the Mediterranean Region, p. 134.
  • Hidaka, E. (1985). Phase velocity of Rayleigh waves and S-wave velocity distribution estimated from long-period microtremors, (Unpublished M. Sc. Dissertation), Hokkaido University (in Japanese).
  • Hisada, Y. (1994). An efficient method for computing Green’s functions for a layered Half-space with sources and receivers at close depths. Bulletin of the Seismological Society of America, Vol: 84 (5), pp: 1456 – 1472.
  • Koçkar, M. K. (2006). Engineering Geological and Geotechnical Site Characterization and Determination of the Seismic Hazards of Upper Pliocene and Quaternary Deposits Situated Towards the West of Ankara, (Unpublished Ph. D. Dissertation), Middle East Technical University/The Graduate School Of Natural And Applıed Scıences, Ankara, Turkey.
  • Koçyiğit, A. (1991). Changing stress orientation in progressive intercontinental deformation as indicated by the neotectonics of Ankara Region. NW Central Anatolia. TAPG Bulletin, 31, 43 - 55, Ankara.
  • Koçyiğit, A. (2008a). Ankara'nın depremselliği ve 2005-2007 Afşar (Bala-Ankara) Depremlerinin Kaynağı. M.T.A Doğal Kaynaklar ve Ekonomi Bülteni, s.1 - 7.
  • Koçyiğit, A. (2008b). Ankara Orogenic phase, its age and Transition From Thrusting-dominated Paleotectonic Period to the strike-slip Neotectonic Period, Ankara (Turkey). Turkish Journal of Earth Sciences, 17, p.433 - 459.
  • Lai, C. G. Rix, G. J. (1998). Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization. (Unpublished Ph. D Dissertation), Georgia Institute of Technology/School of Civil and Environmental Engineering, Georgia.
  • Ling, S. Okada, H. (1993). An extended use of the spatial autocorrelation method for the estimation of geological structure using microtremors. Proc. 89th Conf. SEGJ. 44 – 48 (in Japanese).
  • Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly. Report of RailwayTech. Res. Inst. 30, No. 1, 25 – 33.
  • Nakamura, Y. (1997). Seismic Vulnerability Indices for Ground and Structures using Microtremor, World Congress on Railway Research, Florence, Extended Abastract Book, 1-7.
  • Nakamura, Y. (2000). Clear Identification of Fundamental Idea of Nakamura’s Technique and Its Application. World Conference of Earthquake Engineering, Auckland.
  • Okada, H. Sakajiri, N. (1983). Estimates of an S-wave velocity distribution using long-period microtremors. Geophys. Bull., Hokkaido University, 42, pp: 119 - 143 (in Japanese).
  • Okada, H. (2003). The Microtremor Survey Method, Geophysical Monograph Series no. 12, SEG, Tulsa.
  • Pampal, S. Özmen, B. Koçkar M. (2008). Ankara’nın depremselliği. Ankara’nın Deprem Tehlikesi ve Riski Çalıştayı Bildiriler Kitabı (Eds: S. Pampal ve B. Özmen), 55 – 74.
  • Tabban, A. (1976). Ankara’nın deprem bölgesinde bulunmasının nedenleri, Deprem Araştırma Enstitüsü Bülteni, 14, 1-34.
  • TBDY (2018). Türkiye Bina Deprem Yönetmeliği: Deprem Etkisi Altında Bina Tasarımı için Esaslar, Türkiye Cumhuriyeti, Ankara.
  • Vaezi, Y. Van der Baan, M. (2015). Comparison of the STA/LTA and power spectral density methods for microseismic event detection, Geophysical Journal International, 203,3, pp. 1896-1908.
  • URL 1, Yerbilimleri Harita Görüntüleyici (mta.gov.tr) (Son Erişim: 01.04.2022)
  • URL2, http://www.koeri.boun.edu.tr/sismo/2/tr/ (Son Erişim: 13.11.2021)
Afet ve Risk Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2018
  • Yayıncı: Ankara Üniversitesi