Çilek Üretim Alanlarından İzole Edilen Trichoderma İzolatlarının Çilekte (cv. Rubygem) Macrophomina phaseolina ’ya Karşı Etkinliğinin Değerlendirilmesi

Bu çalışma, Aydın ili çilek üretim alanlarından toprağın 5-20 cm derinliğinden alınan toprak örneklerinden izole edilen 10 adet Trichoderma izolatın çilekte sorun olan Macrophomina phaseolina’ya karşı etkililiğinin belirlenmesi amacıyla yürütülmüştür. Trichoderma spp. ile yürütülen ikili kültür çalışmalarında %25.9-59.1 oranında M. phaseolina’nın miselyal gelişimi sınırladığı belirlenmiştir. Tüm izolatlarda hiperparazitizim görülmüştür. Ayrıca ilk kez bu çalışmada Trichoderma izolatlarının oluşturduğu uçucu bileşiklerin patojenin oluşturduğu mikrosklerot miktarını önemli derecede azalttığı tespit edilmiştir. Saksı çalışmaları ise Trichoderma spp.’nin M. phaseolina’ya etkisini ortaya koymak amacıyla antagonist ve patojenin aynı anda (Tr+Mp), antagonist inokulasyonundan 15 gün sonra patojenin uygulanması *Tr+Mp(15)+ şeklinde yapılmıştır. Mikrosklerot inokulasyonu 50 ml 1.6x103 sklerot/g, Trichoderma izolatları fide yetiştirme ortamının %2’si (14g) olacak şekilde uygulanmıştır. Her fidenin dikim öncesi ve dikimden 10 hafta sonra deneme sonlandığında fide ağırlıkları ayrı ayrı kaydedilmiştir. Yaş ağırlık artışı (%) ve çöken fide oranı (%) değerlendirilmiştir. Tr+Mp uygulamasında, Tr28 (%36.47) izolatında en fazla ağırlık artışı belirlenmiştir. Aynı zamanda Tr izolatları arasında Tr28 izolatında fide ölümü görülmemiştir. Tr+Mp(15) uygulamasında ise Tr25 (%47.37) izolatında fidelerde en fazla yaş ağırlık artışı saptanmıştır ve Tr26, Tr24, Tr21, Tr28 inokule edilen saksılarda fide ölümü görülmemiştir.

Isolated of Trichoderma Isolates in Strawberry Production Area on Determination of the Effectiveness Against Macrophomina phaseolina in Strawberry (cv. Rubygem)

This study was carried out in order to determine the effectiveness of 10 Trichoderma isolates strawberry growing areas of Aydın province against Macrophomina phaseolina, which is a problem in Strawberry. Soil samples taken from 5-20 cm depth of soil were used for Trichoderma spp isolation. Mycelial growth of M. phaseolina was inhibited by Trichoderma spp. at the rate of 25.9-59.1% in dual culture. Hyperparasitism was observed in all isolates. Furthermore, for the first time in this study, it was determined that the volatile compounds of Trichoderma isolates significantly reduced microsclerotia formation of the pathogen. Pot trials were performed to determine the effect of Trichoderma spp. on M. phaseolina by applying antagonist and pathogen at the same time (Tr+Mp) and pathogen 15 days after antagonist inoculation [Tr+Mp(15)]. Microsclerotia concentration was applied with 50 ml water ensuring 1.6x103 in 1 gr of soil and the inoculum of Trichoderma isolates were homogenously added into soil of pot at the rate of 2% (14 g). Each seedling weights before planting and at the end of after 10 weeks planting were recorded separately. Fresh weight increase (%) was calculated and seedling death increase (%) the results were evaluated. In Tr+Mp application, maximum weight increase was determined in Tr28 (36.47%) isolates. At the same time, seedling death was not observed among Tr28 isolates. In Tr+Mp (15) application, highest increase seedling fresh weight was observed at Tr25 (47.37%). In Tr26, Tr24, Tr21, Tr28 no plant death was observed in inoculated pots.

___

  • Anonim (2018) Bitkisel Üretim İstatistikleri. Türkiye İstatistik Kurumu, https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr. (Erişim Tarihi: 04/09/2019)
  • Askew DJ, Laing MD (1993) An Adapted Selective Medium for the Quantitative Isolation of Trichoderma Species. Plant Pathology 42(5): 686- 690.
  • Aviles M, Castillo S, Bascón J, Zea-Bonilla T, Sánchez PM, Perez-Jimenez RM (2008) First Report of Macrophomina phaseolina Causing Crown and Root Rot of Strawberry in Spain. Plant Pathology 57(2): 382.
  • Aviles M, Castillo S, Borrero C, Castillo ML, Zea-Bonilla T, Perez-Jimenez RM (2009) Response of Strawberry Cultivars: ‘Camarosa’, ‘Candonga’, and ‘Ventana’ to Inoculation with Isolates of Macrophomina phaseolina. Acta Horticulturae 842: 291–294.
  • Benlioğlu S, Yıldız A, Döken T (2004) Studies to Determine the Causal Agents of Soilborne Fungal Diseases of Stra berries in Aydın and to Control them by Soil Disinfestation. Journal of Phytopathology 152(18): 509-513.
  • Benlioğlu S, Boz Ö, Yıldız A, Kaşkavalcı G, Benlioğlu K (2005) Alternative Soil Solarization Treatments for the Control of Soil-borne Diseases and Weed of Strawberry in the Western Anatolia of Turkey. Journal of Phytopathology 153(7-8): 423-430.
  • Benlioğlu S, Yıldız A, Boz O, Benlioğlu K (2014) Soil Disinfestation Options in Aydın Province, Turkey, Strawberry Cultivation. Phytoparasitica 42(3): 397- 403.
  • Benlioğlu S, Yıldız A, Özyilmaz Ü, Korkom Y, Benlioğlu K (2018) Çileklerde Macrophomina phaseolina’ya Karşı Bazı Fungisit ve Antagonistik Bakterilerin Etkisi. Uluslararası Katılımlı VII. Bitki Koruma Kongresi, 14-17 Kasım 2018, Muğla, 74-75.
  • Chamorro M, Miranda L, Domínguez P, Medina JJ, Soria C, Romero F, López-Aranda JM, De los Santos B (2015) Evaluation of Biosolarization for the Control of Charcoal Rot Disease (Macrophomina phaseolina) in Strawberry. Crop Protection 67: 279–286.
  • Chet I, Baker R (1981) Isolation and Biocontrol Potential of Trichoderma hamatum from Soil Naturally Suppressive to Rhizoctonia solani. Phytopathology 71: 286-290.
  • Conti S, Villari G, Faugno S, Melchionna G, Somma S, Caruso G (2014) Effects of Organic vs. Conventional Farming System on Yield and Quality of Strawberry Grown as an Annual or Biennial Crop in Southern Italy. Scientia Horticulture 180: 63-71.
  • Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2016) Ecological Functions of Trichoderma spp. and their Secondary Metabolites in the Rhizosphere: Interactions with Plants. FEMS Microbiology Ecology 92(4): fiw036.
  • Dennis C, Webster J (1971a) Antagonistic Properties of Species Groups of Trichoderma I. Production of Non- Volatile Antibiotics. Transactions of the British Mycological Society 57(1): 25–39.
  • Dennis C, Webster J (1971b) Antagonistic Properties of Species Groups of Trichoderma II. Production of Volatile Antibiotics. Transactions of the British Mycological Society 57(1): 41–48.
  • Doley K, Jite PK (2012) In-vitro Efficacy of Trichoderma viride Against Sclerotium rolfsii and Macrophomina phaseolina. Notulae Scientia Biologicae 4(4): 39-44.
  • Domínguez P, Miranda L, Soria C, De los Santos B, Chamorro M, Romero F, Daugovish O, López-Aranda JM, Medina JJ (2014) Soil Biosolarization For Sustainable Strawberry Production. Agronomy for Sustainable Development Agronomy for Sustainable Development 34(4): 821–829.
  • Elad Y, Chet I, Henis Y (1981) A Selective Medium for Improving Quantitative Isolation of Trichoderma spp. from Soil. Phytoparasitica 9(1): 59-67.
  • Elmore CL, Stapleton JJ, Bell CE, Devay JE (1997) Soil Solarization: A Nonpesticidal Method for Controlling Diseases, Nematodes, and Weeds. University of California Division of Agriculture and Natural Resources Publication 21377.
  • FAOSTAT (2019) Statistical databases (FAOSTAT). http://faostat.fao.org. (Erişim Tarihi: 04/09/2019)
  • Hansen HN (1926) A Simple Method of Obtaining Single Spore Cultures. Science 64(1659): 384-384.
  • Howell CR (2007) Effect of Seed Quality and Combination Fungicide Trichoderma spp. Seed Treatments on Pre- and Postemergence Damping-off in Cotton. Phytopathology 97(1): 66-71.
  • Jiang Y, Wang JL, Chen J, Mao LJ, Feng XX, Zhang, CL (2016) Trichoderma Biodiversity of Agricultural Fields in East China Reveals a Gradient Distribution of Species. PLoS ONE 11(8): e0160613.
  • Joshi D, Misra SC (2013) Characterization of Trichoderma Isolates from Sugarcane Agro-Ecosystem and their Efficacy Against Colletotrichum falcatum Causing Red Rot of Sugarcane. Sugar Tech 15 (2): 192–196.
  • Koike ST (2008) Crown Rot of Strawberry Caused by Macrophomina phaseolina in California. Plant Disease 92(8): 1253-1253.
  • Korkom Y (2016) Aydın İli Çilek Üretim Alanlarında Trichoderma Türlerinin Belirlenmesi ve Macrophomina phaseolina’ya Karşı Etkinliklerinin Saptanması. Yüksek Lisans Tezi, Aydın Adnan Menderes Üniversitesi, Aydın.
  • Kredics L, Antal Z, Manczinger L, Szekeres A, Kevei F, Nagy E (2003) Influence of Environmental Parameters on Trichoderma Strains with Biocontrol Potential. Food Technology and Biotechnology 41(1): 37-42.
  • Maas JL (1998) Compendium of Strawberry Diseases. St. Paul, MN: APS press 98.
  • Manici LM, Caputo F, Cerato C (1995) Temperature Responses of Isolates of Macrophomina phaseolina from Different Climatic Regions of Sunflower Production in Italy. Plant Disease 79(8): 834-838.
  • Mertely J, Seijo T, Peres N (2005) First Report of Macrophomina phaseolina Causing a Crown Rot of Strawberry in Florida. Plant Disease 89(4): 434–434.
  • Mihail JD (1992). Macrophomina. In: Singleton L, Mihail J and Rush C (eds.) Methods for Research on Soil-borne Phytopathogenic Fungi. American Phytopathology Society 134–140.
  • Mishra BK, Mishra RK, Mishra RC, Tiwari AK, Yadav RS, Dikshit A (2011) Biocontrol Efficacy of Trichoderma viride Isolates Against Fungal Plant Pathogens Causing Disease in Vigna radiata L. Archives of Applied Science Research 3(2): 361-369.
  • Özyılmaz Ü, Benlioğlu K, Yıldız A, Benlioğlu HS (2016) Effects of Soil Amendments Combined with Solarization on The Soil Microbial Community in Strawberry Cultivation Using Quantitative Real-Time PCR. Phytoparasitica 44(5): 661-680.
  • Pastrana AM, Basallote-Ureba MJ, Aguado A, Akdi K, Capote N (2016) Biological Control of Strawberry Soil-borne Pathogens Macrophomina phaseolina and Fusarium solani, using Trichoderma asperellum and Bacillus spp. Phytopathologia Mediterranea 55(1): 109-120.
  • Porras M, Barrau C, Arroyo FT, Santos B, Blanco C, Romero F (2007) Reduction of Phytophthora cactorum in Strawberry Fields by Trichoderma spp. and Soil Solarization. Plant Disease 91(2): 142-146.
  • Rahman A, Begum M.F, Rahman M, Ilıas GNM, Alam M (2011) Isolation and Identification of Trichoderma Species from Different Habitats and their Use for Bioconversion of Solid Waste. Turkish Journal of Biology 35(2): 183-194.
  • Ramanathan G, Saran SM, Vinodhkumar T (2013) Evaluation of Antifungal Activity of Metabolites from Trichoderma Species Against Fungal Phytopathogens. International Journal of Science Innovations and Discoveries 3(5): 528-538.
  • Reddy B, Saritha K, Hindumathi A (2014) In-vitro Screening of Antagonistic Potential of Seven Species of Trichoderma Against Different Plant Pathogenic Fungi. Research Journal of Biology 2: 29-36.
  • Rifai MA (1969) A Revision of the Genus Trichoderma. Mycological papers 116: 1-56.
  • Sreedevi B, Charitha DM, Saigopal D (2011) Isolation and Screening of Effective Trichoderma spp. Against the Root Rot Pathogen Macrophomina phaseolina. Journal of Agricultural Technology 7(3): 623-635.
  • Subbarao KV, Hubbard JC, Koike ST (1999) Evaluation of Broccoli Residue Incorporation Into Field Soil for Verticillium Wilt Control in Cauliflower. Plant Disease 83(2): 124-129.
  • Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009) Harzianic Acid, an Antifungal and Plant Growth Promoting Metabolite from Trichoderma harzianum. Journal of Natural Products 72(11): 2032-2035.
  • Yıldız A, Benlioğlu S, Boz Ö, Benlioğlu K (2010) Use of Different Plastics for Soil Solarization in Strawberry Growth and Time Temperature Relationships for the Control of Macrophomina phaseolina and Weeds. Phytoparasitica 38(5): 463-473.
  • Yıldız A, Benlioğlu S (2014) A Laboratory Bioassay for Evaluating Pathogenicity of Macrophomina phaseolina and Rhizoctonia solani Isolates to Strawberry Stolons. Phytoparasitica 42: 367-369.
Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi-Cover
  • ISSN: 1304-7787
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2004
  • Yayıncı: Adnan Üniv. Ziraat Fak.