vgb+ Rekombinant Enterobacter aerogenes Kullanılan Mikrobiyal Yakıt Pillerinde Enerji Verimliliği Üzerine Elektrot Türünün Etkisi
Bu çalışma kapsamında önemli bir proton üreten bakteri türü olan E. aerogenes kullanılarak mikrobiyal yakıt hücreleri tasarımı gerçekleştirilerek enerji verimlilikleri belirlenmiştir. Bu yakıt hücrelerinin tasarımında proton geçirgen membrane olarak nafyon membran tercih edilmiştir. Anot bölmesi medyatörü metilen mavisi olarak tercih edilirken katot bölmesinde Potasyum ferrisiyanid kullanılmıştır. Çalışma kapsamında E. aerogenes kullanılarak hazırlanan yakıt pillerinin optimizasyonu ve enerji verimliliği üzerine elektrot türünün etkinliği belirlenmiştir. Elektrot türü olarak grafit, alaşım ve bakır elektrotlar kullanılarak kıyaslamalı bir çalışma gerçekleştirilmiştir. bakır elektrotla yapılan denemede en yüksek voltaj değeri 0.23 V, kompozit elektrotda 0.38 V, karbon elektrotta ise 0.52 V olarak okunmuştur. En yüksek voltaj miktarını veren elektrotun karbon elektrot olduğu saptanıştır. Ayrıca hazırlanan mikrobiyal yakıt pilinin, besiyeri, pH ve mikroorganizma inkübasyon süre optimizasyonları gerçekleştirilmiştir.
The Effect of Electrode Type on Energy Efficiency in Microbial Fuel Cells Using vgb+ Recombinant Enterobacter aerogenes
In this study, microbial fuel cells were designed using E. aerogenes, an importantproton producing bacterium, to determine energy efficiency. In the design of these fuelcells, nafion membrane is preferred as a proton permeable membrane. Potassiumferricyanide was used in the cathode section when the anode partition mediator wasprefered as methylene blue. Within the scope of the study, the efficiency of theelectrode route on the optimization and energy efficiency of fuel pellets prepared usingE. aerogenes was determined. A comparative study was carried out using graphite,composite and copper electrodes as the electrode type. In the experiment with copperelectrode, the highest voltage value was read as 0.23 V, 0.38 V on the compositeelectrode and 0.52 V on the carbon electrode. It is determined that the electrode givingthe highest voltage is the carbon electrode. Furthermore, optimization of designedmicrobial fuel cell’s nutrient, pH and microorganism incubation time has been realized.
___
- Andújar, J. M., Segura, F., Fuel cells: History and updating. A walk along
two centuries, Renewable and Sustainable Energy Reviews, 13 (9), 2309–2322, 2009.
- Mekhilef, S., Saidur, R., Safari, A., Comparative study of different fuel cell
Technologies, Renewable and Sustainable Energy Reviews, 16 (1), 981–989, 2012.
- Mohan, Y., Kumar, S., Manoj Muthu, D. D., Electricity generation using
microbial fuel cells, Int J Hydrogen Energy, 33, 423 – 426, 2008.
- Samrot, A. V., Senthilkumar, P., Pavankumar, K., Akilandeswari, G. C.,
Rajalakshmi, N., Dhathathreyan, K. S., Electricity generation by Enterobacter cloacae
SU-1 in mediator less microbial fuel cell, Int J Hydrogen Energy, 35, 7723 – 7729,
2010.
- Du, Z., Li, H., and Gu, T. A., State of art review on microbial fuel cells: A
promisig technology for wastewater treatment and bioenergy, Biotechnology Advances,
25, 464-482, 2007.
- Xia, X,, Cao, X., Liang, P., Huang, X., Yang, S., Zhao, G., Electricity
generation from glucose by a Klebsiella sp. in microbial fuel cells, Bıoenergy and
Bıofuels, Appl Microbiol Biotechnol, 87, 383–390, 2010.
- Aldrovandi, A., Marsili, E., Stante, L., Paganin, P., Tabacchioni, S., Giordano,
A., Sustainable power production in a membrane-less and mediator-less synthetic
wastewater microbial fuel cell, Bioresource Technology, 100, 3252–3260, 2009.
- Sharma, V., Kundu, P. P., Biocatalysts in microbial fuel cells, Enzyme and
Microbial Technology, 47, 179–188, 2010.
- Rabaey, K., Lissens, G., Siciliano, S. D., Verstraete, W. A., Microbial fuel cell
capable of converting glucose to electricity at high rate and efficiency, Biotechnol. Lett,
25, 1531–1535, 2003.
- Daniel, D. K., Mankidy, B. D., Ambarish, K., Manogari, R., Construction
and operation of a microbial fuel cell for electricity generation from wastewater, Int J
Hydrogen Energy, 34, 7555 – 7560, 2009.
- Guerrero, A., Larrosa, S. K., Head, I. M., Mateo, F., Ginesta, A., Godinez,
C., Effect of temperature on the performance of microbial fuel cells, Fuel 89, 3985–
3994 2010.
- He, Z., Angenent, L. T., Application of bacterial biocathodes in microbial
fuel cells, Electroanalysis, 18 (19-20), 2009-2015, 2006.
- Min, B., Cheng, S., Logan, B. E., Electricity generation using membrane and
salt bridge microbial fuel cells, Water Res, 39, 1675-1686, 2005.
- Hu, H., Liu, H., Fan, Y., Hydrogen production using single-chamber
membrane-free microbial electrolysis cells, Water Res, 42 (15), 4172-4178, 2008.
- He, Z., Huang, Y., Manohar A. K., Mansfeld, F., Effect of electrolyte pH on
the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell,
Bioelectrochemistry, 74, 78–82, 2008.
- Hong, L., Stephen, G., Bruce, E. L., Electrochemically assisted microbial
production of hydrogen from acetate, Environ. Sci.Technol, 39, 4317–4320, 2005.
- Tanisho, S., Wakao, N., Kosako, Y., Biological hydrogen-production by
Enterobacter aerogenes, Journal of Chemical Engineering of Japan, 16, 529–530, 1983.
- Richter, H., McCarthy, K., Nevin, K. P, Johnson, J. P., Rotello, V. M.,
Lovley, D. R., Electricity generation by Geobacter sulfurreducens attached to gold
electrodes, Langmuir, 24, 4376–4379, 2008.
- Rezaei, F., Xing, D., Wagner, R., Regan, J. M., Richard, T. L., Logan, B. E.,
Simultaneous cellulose degradation and electricity production by Enterobacter cloacae
in a microbial fuel cell, Appl. Environ. Microbiol, 75, 3673–3678, 2009.
- Watson, V. J., Logan, B. E., Power production in mfcs inoculated with
Shewanella oneidensis MR-1 or mixed cultures, Biotechnol. Bioeng, 105, 489–498,
2010.
- Nimje, V. R., Chen, C. Y., Chen, C. C., Jean, J. S., Reddy, A. S., Fan, C. W.,
Pan, K. Y., Liu, H. T., Chen, J. L., Stable and high energy generation by a strain of
Bacillus subtilis in a microbial fuel cell, J. Power Sources, 190, 258–263, 2009.
- Lanthier, M., Gregory, K. B., Lovley, D. R., Growth with high planktonic
biomass in Shewanella onseidenis fuel cells, FEMS Microbiol. Lett, 278, 29–35, 2008.
- Kiely, P. D., Call, D. F., Yates, M. D., Regan, J. M., Logan, B.E., Anodic
biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria
than abundant genera, Appl. Microbiol. Biotechnol, 88, 371–380, 2010.
- Tanisho, S., A strategy for improving the yield of hydrogen by fermentation,
Hydrogen Energy Progress, 1 (2), 370–375, 2000.
- Tanisho, S., Suzuki, Y., Wakao, N., Fermentative hydrogen evolution by
Enterobacter aerogenes strain E-82005, International Journal of Hydrogen Energy, 12,
623–627, 1987.
- Zhang, C., Lv, F.X., Xing, X.H., Bioengineering of the Enterobacter aerogenes
strain for biohydrogen production, Bioresource Technology, 102, 8344–8349, 2011.
- Erenler Özalp, Ş., Cloning, Isolation and Expression of L-Asparaginase Gene
(ANSb) to Different Gram-Negative Bacteria, Inonu University-Institute of Science and
Technology, Department of Biology, Ph.D. Thesis, 2007.
- Gould, J.L., Unusual life, TUBITAK Popular Science Books, Ankara, 61–74, 1999.
- Zhang, Y., Yu, H., Shi, Y., Yang, S and Shen, Z., Effect of Vitreoscilla hemoglobin
biosynthesis in Escherichia coli on production of poly(β- hydroxybutyrate) and
fermentative parameters, FEMS Microbiology Letters, 214, 223–227, 2002.
- Li, Y., Zhuang, L., Zhou, S., Yuan, Y., Enhanced performance of air-cathode
twochamber microbial fuel cells with high-pH anode and low-pH cathode, Bioresour.
Technol, 101, 3514–3519, 2010.
- Sun, J., Hu, Y., Bi, Z., Cao, Y., Simultaneous decolorization of azo dye and
bioelectricity generation using a microfiltration membrane air-cathode single chamber
microbial fuel cell, Bioresour. Technol, 100, 3185–3192, 2009.
- Liu, L., Li, F.B., Feng, C.H., Li, X.Z., Microbial fuel cell with an azo-dyefeeding
cathode, Appl. Microbiol. Biotechnol, 85, 175–183, 2009.
- Li, Z., Zhang, X., Lin, J., Han, S., Lei, L., Azo dye treatment with simultaneous
electricity production in an anaerobic–aerobic sequential reactor and microbial fuel
cell coupled system, Bioresour. Technol, 101 (34), 4440–4445, 2010.
- Sun, J., Bi, Z., Hou, B., Cao, Y., Hu, Y., Further treatment of decolorization liquid
of azo dye coupled with increased power production using microbial fuel cell equipped
with an aerobic biocathode, Water Res, 45, 283–291, 2011.
- Cao, Y., Hu, Y., Sun, J., Hou, B., Explore various co-substrates for simultaneous
electricity generation and Congo red degradation in air-cathode single-chamber
microbial fuel cell, Bioelectrochemistry, 79, 71–76, 2010.
- Erenler Özalp, Ş., Effects of Bacterial Hemoglobin Gene on the Physiological and
Metabolic Activities of Enterobacter aerogenes, Inonu University - Institute of Science,
Department of Biology, M.Sc. Thesis, 2001.