Sağ (,)-Jordan İdealler ve Tek Yanlı Genelleştirilmiş Türevler Üzerine

R, karakteristiği 2 den farklı bir asal halka ve σ,τ,α,β,λ,μ,γ dönüşümleri R üzerinde otomorfizmler olsunlar. h:R→R sıfırdan farklı bir sol (sağ)-genelleştirilmiş (α,β)-türev, b∈R ve U ile V, R halkasının sıfırdan farklı sağ (σ,τ)-Jordan idealleri olsunlar. Bu makalede, aşağıdaki durumları araştırdık: (1) bh(γ(U))=0, (2) h(γ(U))b=0, (3) h(γ(U))=0, (4) UC λ,µ(V), (5) bh(I) C λ,µ(U) or h(I)bC λ,µ(U), (6) bVC λ,µ(U) or VbC λ,µ(U).

On Right (σ, τ)-Jordan Ideals and One Sided Generalized Derivations

Let R be a prime ring with characteristic not 2 and σ, τ, α, β, λ, μ, γautomorphisms of R. Let h: R→R be a nonzero left (resp. right)-generalized (α,β)-derivation, bR and U, V nonzero right (σ,τ)-Jordan ideals of R. In this article we haveinvestigated the following situations:(1) bh(γ(U))=0, (2) h(γ(U))b=0, (3) h(γ(U))=0, (4) UC λ,µ(V), (5) bh(I)C λ,µ(U) or h(I)bC λ,µ(U), (6) bVC λ,µ(U) or VbC λ,µ(U).

___

  • Aydın, N. and Kaya, K., Some Generalizations in Prime Rings with (σ,τ)- Derivation, Tr. J. Math., 16(3), 169-176, 1992.
  • Bresar, M., On the Distance of the Composition of Two Derivation to Generalized Derivations, Glasgow Math. J., 33, 89-93, 1991.
  • Chang, J. C., On the Identity h(x)=af(x)+g(x)b, Taiwanese J. Math., 7(1), 103- 113, 2003.
  • Güven, E., One Sided (σ,τ)-Lie Ideals and Generalized Derivations in Prime Rings, Palestine Journal of Mathematics, 7(2), 479-486, 2018.
  • Güven, E., One Sided Generalized (σ,τ)-Derivations in Rings, Boletim Sociedade Paranaense de Matemática, 38(2), 41-50, 2020 (to appear). [6] Kandamar, H. and Kaya, K., (σ,τ)-Right Jordan Ideals, Cumhuriyet Üniversitesi Fen Bilimleri Dergisi, 1993.
  • Kaya, K., Kandamar, H. and Aydın, N., Generalized Jordan Structure of Prime Rings, Tr. J. Math., 251-258, 1993.
  • Kaya, K., On a (σ,τ)-Derivations of Prime Rings, Doğa TU Mat. D. C., 12(2), 42-45, 1988. [9] Mayne, J. H., Centralizing Mappings of Prime Rings, Canad. Math. Bull., 27, 122-126, 1984.
  • Zaidi, S. M. A., Ashraf, M. and Ali, S., On Jordan Ideals and Left (θ,θ)- Derivations, in Prime Rings, Int. J. Math. Math. Sci., 37, 1957-1964, 2004.