Prevalence and Antibiotic Resistance of Arcobacter spp. Isolates from Meats, Meat Products, and Giblets

Prevalence and Antibiotic Resistance of Arcobacter spp. Isolates from Meats, Meat Products, and Giblets

In this study, the presence and the species distribution of Arcobacter spp. were determined in ground beef, ground lamb, meatballs, chicken meat, and chicken giblet samples (470 samples in total) using the 16S rDNA polymerase chain reaction-restriction fragment length polymorphism method. The presence of Arcobacter spp. was found to be 36.38% (n=171) in all samples analyzed; 23.3% (n=63) in ground beef, ground lamb, and meatball samples; 51.3% (n=77) in chicken meat, and 62% (n -= 31) in giblet samples. Chicken wings had the highest Arcobacter spp. contamination level (72%), and the lowest contamination was found in ground lamb (20%) samples. A higher prevalence of Arcobacter spp. was found in chicken meat and giblets than in other samples, and chicken leg and chicken breast with skin had higher prevalence of Arcobacter spp. than those without skin. A. butzleri was the most isolated species in all samples. In neck, leg, breast, and wings samples, A. cryaerophilus was the second most isolated species. In addition, we assessed antibiotic resistance of the isolates found in this study using 14 different antibiotics. All A. butzleri and A. skirrowii isolates, as well as most of the A. cryaerophilus isolates (96.7%), showed resistance to cefoperazone. A. butzleri isolates were mostly susceptible to norfloxacin (61.5%), florphenicol (60.5%), and amoxicillin/clavulanic acid. A. skirrowii isolates showed susceptibility to ciprofloxacin (91.6%), norfloxacin (88.8%), and chloramphenicol (83.3%). A. cryaerophilusisolates showed susceptibility to chloramphenicol (96.7%), streptomycin (83.8%), cefoperazone (83.8%), and florphenicol (80.6%). We have identified that many food samples examined in this study were contaminated with Arcobacter species. Arcobacter contamination poses a human health concern and multiple antibiotic resistance in the isolates and this may pose a risk to public health.

___

  • Abay, S., Kayman, T., Hizlisoy, H., & Aydin, F. (2012). In vitro antibacterial susceptibility of Arcobacter butzleri isolated from different sources. Journal of Veterinary Medical Science, 74(5), 613–616. [CrossRef]
  • Amare, L. B., Saleha, A. A., Zunita, Z., Jalila, A., & Hassan, L. (2011). Prevalence of Arcobacter spp. on chicken meat at retail markets and in farm chickens in Selengor. Malaysia Food Control, 22, 732–736.
  • Atabay, H. I., Aydin, F., Houf, K., Sahin, M., & Vandamme, P. (2003). The prevalence of Arcobacter spp. on chicken carcasses sold in retail markets in Turkey and identification of the isolates using SDS-PAGE. International Journal of Food Microbiology, 81(1), 21–28.
  • Aydin, F., Gümüssoy, K. S., Atabay, H. I., Iça,T., & Abay, S. (2007). Prevalence and distribution of Arcobacter species in various sources in Turkey and molecular analysis of isolated strains by ERIC-PCR. Journal of Applied Microbiology, 103(1), 27–35. [CrossRef]
  • Bagalakote, P. S., Rathore, R. S., Ramees, T. P., Mohan, H. V., Sumankumar, M., Agarwal, R. K., Kumar, A., & Dhama, K. (2014). Molecular characterization of Arcobacter isolates using randomly amplified polymorphic DNApolymerase chain reaction (RAPD-PCR). Asian Journal of Animal and Veterinary Advances, 9(9), 543–555. [CrossRef]
  • Clinical and Laboratory Standards Institute. (2012). Performance standarts for antimicrobial susceptibility testing. In Twenty-second Informational Supplement M100-S20. Collado, L., Guarro, J., & Figueras, M. J. (2009). Prevalence of Arcobacter in meat and shellfish. Journal of Food Protection, 72(5), 1102–1106. [CrossRef].
  • Corry, J. E. L., Atabay, H. I., Forsythe, S. J., & Mansfield, L. P. (2003). Culture media for the isolation of campylobacters, helicobacters and arcobacters. In JEL. Corry, GDW. Curtis, & RM. Baird (Eds.), Handbook of Culture Media for Food Microbiology, 2nd ed (pp. 271–315). Amsterdam: Elsevier.
  • De Oliveira, M. G. X., Gomes, V. T. M., Cunha, M. P. V., Moreno, L. Z., Moreno, A. M., & Knöbl, T. (2018). Genotypic characterization of Arcobacter spp. Isolated from chicken meat in Brazil. Foodborne Pathogens and Disease, 15(5), 293–299. [CrossRef]
  • De Smet, S., De Zutter, L., Van Hende, J., & Houf, K. (2010). Arcobacter contamination on pre- and post-chilled bovine carcasses and in minced beef at retail. Journal of Applied Microbiology, 108(1), 299–305. [CrossRef]
  • Di Noto, A. M. D., Sciortino, S., Cardamone, C., Ciravolo, C., Napoli, C., Alio, V., Arculeo, P., Oliveri, G., & Costa, A. (2018). Detection of Arcobacter spp. in food products collected from Sicilia region: A preliminary study. Italian Journal of Food Safety, 7(2), 7171. [CrossRef]
  • Elmalı, M., & Can, H. Y. (2016). Occurence and antimicrobial resistance of Arcobacter species in food and slaughterhouse samples. Food Science and Technology (Campinas), 37(2), 280–285. [CrossRef]
  • Fera, M. T., Maugeri, T. L., Gugliandolo,C., La Camera, E., Lentini, V., Favaloro, A., Bonanno, D., & Carbone, M. (2008). Induction and resuscitation of viable nonculturable Arcobacter butzleri cells. Applied and Environmental Microbiology, 74(10), 3266–3268. [CrossRef]
  • Fera, M. T., Maugeri,T. L., Giannone, M., Gugliandolo, C., La Camera, E., Blandino, G., & Carbone, M. (2003). In vitro susceptibility of Arcobacter butzleri and Arcobacter cryaerophilus to different antimicrobial agents. International Journal of Antimicrobial Agents, 21(5), 488–491. [CrossRef]
  • Ferreira, S., Oleastro, M., & Domingues, F. (2019). Current insights on Arcobacter butzleri in food chain. Current Opinion in Food Science, 26, 9–17. [CrossRef]
  • Ferreira, S., Queiroz, J. A., Oleastro, M., & Domingues, F. C. (2016). Insights in the pathogenesis and resistance of Arcobacter: A review. Critical Reviews in Microbiology, 42(3), 364–383. [CrossRef]
  • Figueras, M. J., Collado, L., & Guarro, J. (2008). A new 16S rDNA-RFLP method for the discrimination of the accepted species of Arcobacter. Diagnostic Microbiology and Infectious Disease, 62(1), 11–15. [CrossRef]
  • Figueras, M. J., Levican, A., & Collado, L. (2012). Updated 16S rRNA-RFLP method for the identification of all currently characterised Arcobacter spp. BMC Microbiology, 12(292), 292. [CrossRef]
  • Figueras, M. J., Levican, A., Pujol, I., Ballester, F., Rabada Quilez, M. J., & GomezBertomeu, F. (2014). A severe case of persistent diarrhoea associated with Arcobacter cryaerophilus but attributed to Campylobacter spp. and a review of the clinical incidence of Arcobacter spp. New Microbes and New Infections, 2(2), 31–37. [CrossRef]
  • Houf, K., De Zutter, L., Van Hoof, J., & Vandamme, P. (2002). Occurrence and distribution of Arcobacter species in poultry processing. Journal of Food Protection, 65(8), 1233–1239. [CrossRef]
  • Jiang, Z. D., DuPont, H. L., Brown, E. L., Nandy, R. K., Ramamurthy, T., Sinha, A., Ghosh, S., Guin, S., Gurleen, K., Rodrigues, S., Chen, J. J., McKenzie, R., & Steffen, R. (2010). Microbial etiology of travelers’ diarrhea in Mexico, Guatemala, and India: Importance of enterotoxigenic Bacteroides fragilis and Arcobacter species. Journal of Clinical Microbiology, 48(4), 1417–1419. [CrossRef]
  • Kabeya, H., Maruyama, S., Morita, Y., Ohsuga, T., Ozawa, S., Kobayashi, Y., Abe, M., Katsube, Y., & Mikami, T. (2004). Prevalence of Arcobacter species in retail meats and antimicrobial susceptibility of the isolates in Japan. International Journal of Food Microbiology, 90(3), 303–308. [CrossRef]
  • Kim, N. H., Park, S. M., Kim, H. W., Cho, T. J., Kim, S. H., Choi, C., & Rhee, M. S. (2019). Prevalence of pathogenic Arcobacter species in South Korea: Comparison of two protocols for isolating the bacteria from foods and examination of nine putative virulence genes. Food Microbiology, 78, 18–24. [CrossRef]
  • Lehmann, D., Alter, T., Lehmann, L., Uherkova, S., Seidler, T., & Gölz, G. (2015). Prevalence, virulence gene distribution and genetic diversity of Arcobacter in food samples in Germany. Berliner und Münchener Tieraerztliche Wochenschrift, 128(3–4), 163–168.
  • Mohan, H. V., Rathore, R. S., Dhama, K., Ramees, T. P., Patya, A., Bagalko, P. S., Wani, M. Y., Bhilegaonk, K. N., & Kumar, A. (2014). Prevalence of Arcobacter spp. in humans, animals and foods of animal origin in India based on cultural isolation, antibiogram, PCR and multiplex PCR detection. Asian Journal of Animal and Veterinary Advances, 9(8), 452–466. [CrossRef]
  • Molva, C., & Atabay, H. I. (2016). Prevalence and diversity of Arcobacter spp. in retail chicken meat in Turkey. Microbiology Research, 7(1), 29–31. [CrossRef]
  • Rahimi, E. (2014). Prevalence and antimicrobial resistance of Arcobacter species isolated from poultry meat in Iran. British Poultry Science, 55(2), 174–180. [CrossRef]
  • Ramees, T. P., Dhama, K., Karthik, K., Rathore, R. S., Kumar, A., Saminathan, M., Tiwari, R., Malik, Y. S., & Singh, R. K. (2017). Arcobacter: An emerging food-borne zoonotic pathogen, its public health concerns and advances in diagnosis and control – A comprehensive review. Veterinary Quarterly, 37(1), 136–161. [CrossRef]
  • Rivas, L., Fegan, N., & Vanderlinde, P. (2004). Isolation and characterisation of Arcobacter butzleri from meat. International Journal of Food Microbiology, 91(1), 31–41. [CrossRef]
  • Scullion, R., Harrington, C. S., & Madden, R. H. (2006). Prevalence of Arcobacter spp. in raw milk and retail raw meats in Northern Ireland. Journal of food protection, 69(8), 1986–1990. https://doi. org/10.4315/0362-028x-69.8.1986
  • Shah, A. H., Saleha, A. A., Murugaiyah, M., Zunita, Z., & Memon, A. A. (2012). Prevalence and distribution of Arcobacter spp. in raw milk and retail raw beef. Journal of Food Protection, 75(8), 1474–1478. [CrossRef]
  • Shah, A. H., Saleha, A. A., Zunita, Z., & Murugaiyah, M. (2011). Arcobacter - An emerging threat to animals and animal origin food products? Trends in Food Science and Technology, 22(5), 225–236. [CrossRef]
  • Shah, A. H., Saleha, A. A., Zunita, Z., Murugaiyah, M., Aliyu, A. B.,. & Jafri, N. (2013). Prevalence, distribution and antibiotic resistance of emergent Arcobacter spp. from clinically healthy cattle and goats. Transboundary and Emerging Diseases, 60(1), 9–16. [CrossRef]
  • Šilha, D., Pejchalová, M., & Šilhová, L. (2017). Susceptibility to 18 drugs and multidrug resistance of Arcobacter isolates from different sources within the Czech Republic. Journal of Global Antimicrobial Resistance, 9, 74–77. [CrossRef]
  • Son, I., Englen, M. D., Berrang, M. E., Fedorka-Cray, P. J., & Harrison, M. A. (2007). Antimicrobial resistance of Arcobacter and Campylobacter from broiler carcasses. International Journal of Antimicrobial Agents, 29(4), 451–455. [CrossRef]
  • Vandamme, P., & De Ley, J. (1991). Proposal for a new family, Campylobacteraceae. International Journal of Systematic Bacteriology, 41, 451–455.
  • Vandenberg, O., Dediste, A., Houf, K., Ibekwem, S., Souayah, H., Cadranel, S., Douat, N., Zissis, G., Butzler, J. P., & Vandamme, P. (2004). Arcobacter species in humans. Emerging Infectious Diseases, 10(10), 1863–1867. [CrossRef]
  • Vicente-Martins, S., Oleastro, M., Domingues, F. C., & Ferreira, S. (2018). Arcobacter spp. at retail food from Portugal: Prevalence, genotyping and antibiotics resistance. Food Control, 85, 107–112. [CrossRef]
  • Villarruel-López, A., Márquez-González, M., Garay-Martínez, L. E., Zepeda, H., Castillo, A., Mota de la Garza, L., Murano, E. A., & Torres-Vitela, R. (2003). Isolation of Arcobacter spp. from retail meats and cytotoxic effects of isolates against Vero cells. Journal of Food Protection, 66(8), 1374–1378. [CrossRef]
  • Waite, D. W., Vanwonterghem, I., Rinke, C., Parks, D. H., Zhang, Y., Takai, K., Sievert, S. M., Simon, J., Campbell, B. J., Hanson, T. E., Woyke, T., Klotz, M. G., & Hugenholtz, P. (2017). Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Frontiers in Microbiology, 8, 682. [CrossRef]
  • Yesilmen, S., Vural, A., Erkan, M. E., & Yildirim, I. H. (2014). Prevalence and antimicrobial susceptibility of Arcobacter species in cow milk, water buffalo milk and fresh village cheese. International Journal of Food Microbiology, 188, 11
Acta Veterinaria Eurasia-Cover
  • ISSN: 2618-639X
  • Başlangıç: 1975
  • Yayıncı: İstanbul Üniversitesi-Cerrahpaşa
Sayıdaki Diğer Makaleler

Experiences in Delivering Teaching and Learning Practices in Establishments of Veterinary Education of the Mediterranean Region Under COVID-19 Pandemic: From Crisis to Opportunities

Noursaid TLIGUI, Abdelfettah ETTRIQUI, Pier PAOLO GATTA, Pierre SANS, Christophe DEGUEURCE, Alessandro RIPANI, Rachid BOUGUEDOUR, Agnès LEBLOND, Emmanuelle SOUBEYRAN, André Laurent PARODI, Ehab ABU BASHA, Nihad FEJZIC, Sabina SERIC-HARACIC, Naim Deniz AYAZ, Daniele DE MENEGHI

Hygienic Quality Features in Baby Formulas, Follow-On Formulas, and Some Supplementary Foods

Emine GENÇ, Aydın VURAL

Preliminary Data on the Suitability of Alkaline Phosphatase Use as Pasteurization Indicator for Donkey Milk

Eleni MALISSIOVA, Athanasios MANOURAS, Maria ALEXANDRAKI

Clinical Efficacy of Enrofloxacin HCl-2H2O (ENRO-C) in a Sheep Leptospirosis Outbreak

Jesus MENDOZA, Luis OCAMPO, Lilia GUTIERREZ, Hector SUMANO

Prevalence and Antibiotic Resistance of Arcobacter spp. Isolates from Meats, Meat Products, and Giblets

İbrahim Halil YILDIRIM, Hüsnü Şahan GÜRAN, Mehmet Emin ERKAN, Simten YEŞİLMEN, Aydın VURAL

Molecular Detection of Middle East Respiratory Syndrome Coronavirus from Dromedary Camels Illegally Transferred to Iran

Zahra ZIAFATIKAFI, Fahimehsadat SEYEDASGARI, Hamideh NAJAFI, Masoud HASHEMZADEH, Leila AGHAEEAN, Arash GHALYANCHILANGEROUD, Laleh MOAZEMİ-GOUDARZI

Nano-emulsion Formulation of Lambda - Cyhalothrin Preparation Technique, Characterization, and Larvicidal Activity

Eman E. ELSHARKAWY, Mahmoud Abd EL-NASSER, Doha YAHIA, Gamal S. ZAYED, Aliaa A. BAKHEET

Determination of Hepatitis E Virus in Sheep and Cattle by Serological and Molecular Methods DNA Sequences Analysis

Mustafa ATASEVER, Fadime TONBAK

Pharmacokinetics of Difloxacin in Probiotics-Treated Mycoplasma Gallisepticum Infected Chickens

Ashraf DARWISH, Hend Fouad MOHAMED, Atef MOHAMED, Attia Hassan ATTA

Partial Substitution of Barley by Destoned Olive-Waste Cake on Reproductive Performances in Ram

Naima HADJAB, Hamza RAHAB, Redouane AISSOUS, Karim BENHENIA, Boubakeur SAFSAF