Pharmacokinetics of Difloxacin in Probiotics-Treated Mycoplasma Gallisepticum Infected Chickens

Pharmacokinetics of Difloxacin in Probiotics-Treated Mycoplasma Gallisepticum Infected Chickens

The impact of probiotics on difloxacin disposition in Mycoplasma gallisepticum-infected chickens after intravenous and oral administration (10 mg/kg)and its tissue residues after oral administration (10 mg/kg for 5 days) wasstudied. Difloxacin concentrations were estimated by the high-performanceliquid chromatography method. Following intravenous administration of difloxacin, the volume of distribution in probiotic-pretreated Mycoplasma gallisepticum-infected chickens (4.05 ± 0.07) was less than that in non-treated birds (4.16 ± 0.07 mg/μg/mL). The t1/2β of difloxacin in probiotic-pretreated Mycoplasma gallisepticum-infected chickens (4.75 ± 0.09 hours) was significantly longer than that in the non-treated ones (4.55 ± 0.05 hours). The total body clearance of the drug from the plasma of probiotic-pretreated Mycoplasma gallisepticum-infected chickens (0.64 ± 0.00 mg/(μg/mL)/h)was less than that in non-treated ones (0.69 ± 0.01 mg/(μg/mL)/h). Thearea under the curve extrapolated to last plasma concentration0–t (15.20 ±0.08 μg/mL/h) and the mean residence time (6.33 ± 0.11 hours) values in probiotic-pretreated Mycoplasma gallisepticum-infected chickens were larger than those in non-treated ones (14.13 ± 0.22 μg/mL/h and 6.02 ± 0.06 hours). The drug was rapidly absorbed orally in probiotic-pretreatedMycoplasma gallisepticum-infected chickens compared to non-treatedones (t1/2ab 1.47 ± 0.02 vs. 1.53 ± 0.05 hours). The peak serum concentrationof difloxacin in probiotic-pretreated Mycoplasma gallisepticum-infectedchickens was higher than that in non-treated ones (1.46 ± 0.07 vs. 1.18 ± 0.07 μg/mL) and was achieved at shorter time to peak concentration (2.59 ± 0.01 vs. 2.74 ± 0.05 hours). Residue levels of difloxacin were lower in probiotic-pretreated Mycoplasma gallisepticum-infected chickens than in non-treated ones in all examined tissues

___

  • Abo El-Ela, F. I., Radi, A. M., El-Banna, H. A., El-Gendy, A. A. M., & Tohamy, M. A. (2014). Pharmacokinetics of difloxacin in healthy and E. coli-infected broiler chickens. British Poultry Science, 55(6), 830–836. [CrossRef]
  • Aboubakr, M., & Elbadawy, M. (2019). Pharmacokinetics of difloxacin in Japanese quails (Coturnix japonica) after single intravenous and oral administration. Research in Veterinary Science, 122, 36–39. [CrossRef]
  • Alomar, M. J. (2014). Factors affecting the development of adverse drug reactions (Review article). Saudi Pharmaceutical Journal , 22(2), 83–94. [CrossRef]
  • Anadón, A., Suárez, F. H., Martínez, M. A., Castellano, V., Martínez, M., Ares, I., Ramos, E., Gamboa, F., & Martínez-Larrañaga, M. R. (2011). Plasma disposition and tissue depletion of difloxacin and its metabolite sarafloxacin in the food producing animals, chickens for fattening. Food and Chemical Toxicology, 49(2), 441–449. [CrossRef]
  • Apata, D. F. (2008). Growth performance, nutrient digestibility and immune response of broiler chicks fed diets supplemented with a culture of Lactobacillus bulgaricus. Journal of the Science of Food and Agriculture, 88(7), 1253–1258. [CrossRef]
  • Atef, M., Atta, A. H., Darwish, A. S., & Mohamed, H. (2017). Pharmacokinetics aspects and tissue residues of marbofloxacin in healthy and Mycoplasma gallisepticum-infected chickens. Wulfenia Journal, 24(10), 80–107.
  • Atta, A. H., & Sharif, L. (1997). Pharmacokinetics of ciprofloxacin following intravenous and oral administration in broiler chickens. Journal of Veterinary Pharmacology and Therapeutics, 20(4), 326–329. [CrossRef]
  • Cazedey, E. C. L., Juodinis, V. D., & Salgado, H. R. N. (2014). A stability-indicating LC method for difloxacin in the presence of degradation products. World Journal of Pharmacy & Pharmaceutical Sciences, 3(9), 45–56.
  • Cressman, A. M., Petrovic, V., & Piquette-Miller, M. (2012). Inflammation-mediated changes in drug transporter expression/activity: Implications for therapeutic drug response. Expert Review of Clinical Pharmacology, 5(1), 69–89. [CrossRef]
  • De Keersmaecker, S. C. J., Verhoeven, T. L. A., Desair, J., Marchal, K., Vanderleyden, J., & Nagy, I. (2006). Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiology Letters, 259(1), 89–96. [CrossRef]
  • Ding, H., Wang, L., Shen, X., Gu, X., Zeng, D., & Zeng, Z. (2013). Plasma and tissue pharmacokinetics of marbofloxacin in experimentally infected chickens with Mycoplasma gallisepticum and Escherichia coli. Journal of Veterinary Pharmacology and Therapeutics, 36(5), 511–515. [CrossRef]
  • Drusano, G., Labro, M. T., Cars, O., Mendes, P., Shah, P., Sörgel, F., & Weber, W. (1998). Pharmacokinetics and pharmacodynamics of fluoroquinolones. Clinical Microbiology and Infection, 4(Suppl. 2), S27–S41.
  • EMEA (The European Agency for the Evaluation of Medicinal Products). (2002). Committee for veterinary medicinal products. Summary report on difloxacin (extension to all food producing species). The European Agency for the evaluation of medicinal products veterinary medicines and inspections (pp. 1–2). EMEA/MRL/819/02-FINAL.
  • Fernández-Varón, E., Cárceles, C. M., Marín, P., Martos, N., Escudero, E., & Ayala, I. (2006). Pharmacokinetics of difloxacin after intravenous, intramuscular, and intragastric administration to horses. American Journal of Veterinary Research, 67(6), 1076–1081. [CrossRef]
  • Fernández-Varón, E., Cárceles, C. M., Marín, P., Vancraeynest, D., Montes, A., Sotillo, J., & García-Martínez, J. D. (2008). Disposition kinetics and pharmacokinetics–pharmacodynamic integration of difloxacin against Staphylococcus aureus isolates from rabbits. Research in Veterinary Science, 84(1), 90–94. [CrossRef]
  • Fernández-Varón, E., Marin, P., Escudero, E., Vancraeynest, D., & Cárceles, C. M. (2007). Pharmacokinetic–pharmacodynamic integration of danofloxacin after intravenous, intramuscular and subcutaneous administration to rabbits. Journal of Veterinary Pharmacology and Therapeutics, 30(1), 18–24. [CrossRef]
  • Forrest, A., Nix, D. E., Ballow, C. H., Goss, T. F., Birmingham, M. C., & Schentag, J. J. (1993). Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrobial Agents and Chemotherapy, 37(5), 1073—1081. [CrossRef]
  • Gautier-Bouchardon, A. V. (2018). Antimicrobial resistance in Mycoplasma spp. Microbiology Spectrum, 6(4). [CrossRef]
  • Gharaibeh, S., & Hailat, A. (2011). Mycoplasma gallisepticum experimental infection and tissue distribution in chickens, sparrows and pigeons. Avian Pathology, 40(4), 349–354. [CrossRef]
  • Gigosos, P. G., Revesado, P. R., Cadahía, O., Fente, C. A., Vazquez, B. I., Franco, C. M., & Cepeda, A. (2000). Determination of quinolones in animal tissues and eggs by high-performance liquid chromatography with photodiodearray detection. Journal of Chromatography. A, 871(1–2), 31–36. [CrossRef]
  • Goldenberg, J. Z., Mertz, D., & Johnston, B. C. (2018). Probiotics to prevent Clostridium difficile infection in patients receiving antibiotics. JAMA, 320(5), 499–500. [CrossRef]
  • Gorden, P. J., Kleinhenz, M. D., Wulf, L. W., KuKanich, B., Lee, C. J., Wang, C., & Coetzee, J. F. (2016). Altered plasma pharmacokinetics of ceftiofur hydrochloride in cows affected with severe clinical mastitis. Journal of Dairy Science, 99(1), 505–514. [CrossRef]
  • Grózner, D., Kreizinger, Z., Sulyok, K. M., Rónai, Z., Hrivnák, V., Turcsányi, I., Jánosi, S., & Gyuranecz, M. (2016). Antibiotic susceptibility profiles of Mycoplasma sp. 1220 strains isolated from geese in Hungary. BMC Veterinary Research, 12(1), 170. [CrossRef]
  • Hannan, P. C. (2000). Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary mycoplasma species. International Research Programme on Comparative Mycoplasmology. Veterinary Research, 31(4), 373–395. [CrossRef]
  • Hassouan, M. K., Ballesteros, O., Zafra, A., Vílchez, J. L., & Navalón, A. (2007). Multiresidue method for simultaneous determination of quinolone antibacterials in pig kidney samples by liquid chromatography with fluorescence detection. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 859(2), 282–288. [CrossRef]
  • Hempel, S., Newberry, S. J., Maher, A. R., Wang, Z., Miles, J. N. V., Shanman, R., Johnsen, B., & Shekelle, P. G. (2012). Probiotics for the prevention and treatment of antibiotic-associated diarrhea: A systematic review and meta-analysis. JAMA, 307(18), 1959–1969. [CrossRef]
  • Inui, T., Taira, T., Matsushita, T., & Endo, T. (1998). Pharmacokinetic properties and oral bioavailabilities of difloxacin in pig and chicken. Xenobiotica: The Fate of Foreign Compounds in Biological Systems, 28(9), 887–893. [CrossRef]
  • Kim, J. K., Choi, M. S., Jeong, J. J., Lim, S. M., Kim, I. S., Yoo, H. H., & Kim, D. H. (2018). Effect of probiotics on pharmacokinetics of orally administered acetaminophen in mice. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 46(2), 122–130. [CrossRef]
  • Kreizinger, Z., Grózner, D., Sulyok, K. M., Nilsson, K., Hrivnák, V., Benčina, D., & Gyuranecz, M. (2017). Antibiotic susceptibility profiles of Mycoplasma synoviae strains originating from Central and Eastern Europe. BMC Veterinary Research, 13, 342.
  • Liao, S. F., & Nyachoti, M. (2017). Using probiotics to improve swine gut health and nutrient utilization. Animal Nutrition, 3(4), 331–343. [CrossRef]
  • Lutful Kabir, S. M. (2009). The role of probiotics in the poultry industry. International Journal of Molecular Sciences, 10(8), 3531–3546. [CrossRef]
  • Madden-Fuentes, R. J., Arshad, M., Ross, S. S., & Seed, P. C. (2015). Efficacy of fluoroquinolone/probiotic combination therapy for recurrent urinary tract infection in children: A retrospective analysis. Clinical Therapeutics, 37(9), 2143–2147. [CrossRef]
  • Marín, P., Escudero, E., Fernández-Varón, E., Ramírez, M. J., & Cárceles, C. M. (2010). Pharmacokinetics and milk penetration of difloxacin after a longacting formulation for subcutaneous administration to lactating goats. Journal of Dairy Science, 93(7), 3056–3064.
  • Modesto, M., D’Aimmo, M. R., Stefanini, I., Trevisi, P., De Filippi, S., Casini, L., Mazzoni, M., Bosi, P., & Biavati, B. (2009). A novel strategy to select Bifidobacterium strains and prebiotics as natural growth promoters in newly weaned pigs. Livestock Science, 122(2–3), 248–258. [CrossRef]
  • Mohamed, H. F., Atta, A. H., Darwish, A. S., & Atef, M. (2021). Effect of probiotics on the pharmacokinetic aspects and tissue residues of difloxacin in broiler chickens. Pakistan Veterinary Journal, 41(2), 269–273.
  • Morrow, C. J., Kreizinger, Z., Achari, R. R., Bekő, K., Yvon, C., & Gyuranecz, M. (2020) Antimicrobial susceptibility of pathogenic mycoplasmas in chickens in Asia. Veterinary Microbiology, 250, 108840. [CrossRef)
  • Mzyk, D. A., Bublitz, C. M., Martinez, M. N., Davis, J. L., Baynes, R. E., & Smith, G. W. (2019). Impact of bovine respiratory disease on the pharmacokinetics of danofloxacin and tulathromycin in different ages of calves. PLoS ONE, 14(6), e0218864. [CrossRef]
  • NCCLS. (2002). Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals: Approved standard (2nd ed). NCCLS document M31-A2. 940 West Valley Road, Suite 1400, Wayne, PA 19087-1898, USA: NCCLS.
  • Neut, C., Mahieux, S., & Dubreuil, L. J. (2017). Antibiotic susceptibility of probiotic strains: Is it reasonable to combine probiotics with antibiotics? Medecine et Maladies Infectieuses, 47(7), 477–483. [CrossRef]
  • Ouwehand, A. C., DongLian, C., Weijian, X., Stewart, M., Ni, J., Stewart, T., & Miller, L. E. (2014). Probiotics reduce symptoms of antibiotic use in a hospital setting: A randomized dose response study. Vaccine, 32(4), 458–463. [CrossRef]
  • Pattani, R., Palda, V. A., Hwang, S. W., & Shah, P. S. (2013). Probiotics for the prevention of antibiotic-associated diarrhea and Clostridium difficile infection among hospitalized patients: Systematic review and metaanalysis. Open Medicine , 7(2), e56–e67.
  • Pavlova, I., Danova, S., Naidenski, H., Tropcheva, R., & Milanova, A. (2015). Effect of probiotics on enrofloxacin disposition in gastrointestinal tract of poultry. Journal of Veterinary Pharmacology and Therapeutics, 38(6), 549–555. [CrossRef]
  • Santini, C., Baffoni, L., Gaggia, F., Granata, M., Gasbarri, R., Di Gioia, D., & Biavati, B. (2010). Characterization of probiotic strains: An application as feed additives in poultry against Campylobacter jejuni. International Journal of Food Microbiology, 141(Suppl. 1), S98–S108. [CrossRef]
  • Sharifi, S. D., Dibamehr, A., Lotfollahian, H., & Baurhoo, B. (2012). Effects of flavomycin and probiotic supplementation to diets containing different sources of fat on growth performance, intestinal morphology, apparent metabolizable energy, and fat digestibility in broiler chickens. Poultry Science, 91(4), 918–927. [CrossRef]
  • Stojančević, M., Bojić, G., Salami, H. A., & Mikov, M. (2014). The influence of intestinal tract and probiotics on the fate of orally administered drugs. Current Issues in Molecular Biology, 16, 55–68.
  • Sullivan, M. C., Cooper, B. W., Nightingale, C. H., Quintiliani, R., & Lawlor, M. T. (1993). Evaluation of the efficacy of ciprofloxacin against Streptococus pneumoniae by using a mouse protection model. Antimicrobial Agents and Chemotherapy, 37(2), 234–239. [CrossRef]
  • Swayne, D. E., Glisson, R. J., McDougald, L. R., Nolan, L.K., Suarez, D.L., & Nair, V. (2013). Diseases of poultry (13th ed). John Wiley and Sons. Turnidge, J. (1999). Pharmacokinetics and pharmacodynamics of fluoroquinolones. Drugs, 58(2), 29–36. [CrossRef]
  • Wan, L. Y. M., Chen, Z. J., Shah, N. P., & El-Nezami, H. (2016). Modulation of intestinal epithelial defense responses by probiotic bacteria. Critical Reviews in Food Science and Nutrition, 56(16), 2628–2641. [CrossRef]
  • Wang, C., Ewing, M., & A’arabi, S. Y. (2001). In vitro susceptibility of avian mycoplasmas to enrofloxacin, sarafloxacin, tylosin, and oxytetracycline. Avian Diseases, 45(2), 456–460. [CrossRef]
  • Xiao, X., Lan, W., Wang, Y., Jiang, L., Jiang, Y., & Wang, Z. (2018). Comparative pharmacokinetics of danofloxacin in healthy and Pasteurella multocida infected ducks. Journal of Veterinary Pharmacology and Therapeutics, 41(6), 912–918. [CrossRef]
  • Yu, H., Tao, Y., Chen, D., Pan, Y., Liu, Z., Wang, Y., Huang, L., Dai, M., Peng, D., Wang, X., & Yuan, Z. (2012). Simultaneous determination of fluoroquinolones in foods of animal origin by a high performance liquid chromatography and a liquid chromatography tandem mass spectrometry with accelerated solvent extraction. Journal of Chromatography B, 885–886, 150–159. [CrossRef]
  • Yu, Y., Zhou, Y. F., Sun, J., Shi, W., Liao, X. P., & Liu, Y. H. (2017). Pharmacokinetic and pharmacodynamic modeling of sarafloxacin against avian pathogenic Escherichia coli in Muscovy ducks. BMC Veterinary Research, 13(1), 47. [CrossRef]
  • Zhang, C. X., Wang, H. Y., & Chen, T. X. (2019). Interactions between intestinal microflora/probiotics and the immune system. BioMed Research International, 2019, 6764919. [CrossRef]
Acta Veterinaria Eurasia-Cover
  • ISSN: 2618-639X
  • Başlangıç: 1975
  • Yayıncı: İstanbul Üniversitesi-Cerrahpaşa
Sayıdaki Diğer Makaleler

Preliminary Data on the Suitability of Alkaline Phosphatase Use as Pasteurization Indicator for Donkey Milk

Eleni MALISSIOVA, Athanasios MANOURAS, Maria ALEXANDRAKI

Hygienic Quality Features in Baby Formulas, Follow-On Formulas, and Some Supplementary Foods

Emine GENÇ, Aydın VURAL

Nano-emulsion Formulation of Lambda - Cyhalothrin Preparation Technique, Characterization, and Larvicidal Activity

Eman E. ELSHARKAWY, Mahmoud Abd EL-NASSER, Doha YAHIA, Gamal S. ZAYED, Aliaa A. BAKHEET

Prevalence and Antibiotic Resistance of Arcobacter spp. Isolates from Meats, Meat Products, and Giblets

İbrahim Halil YILDIRIM, Hüsnü Şahan GÜRAN, Mehmet Emin ERKAN, Simten YEŞİLMEN, Aydın VURAL

Humerus Fracture Treatment in a Raccoon After Dog Attack

Ebuderda GÜNAY, Yusuf ALTUNDAĞ, Serhat ÖZSOY

Experiences in Delivering Teaching and Learning Practices in Establishments of Veterinary Education of the Mediterranean Region Under COVID-19 Pandemic: From Crisis to Opportunities

Noursaid TLIGUI, Abdelfettah ETTRIQUI, Pier PAOLO GATTA, Pierre SANS, Christophe DEGUEURCE, Alessandro RIPANI, Rachid BOUGUEDOUR, Agnès LEBLOND, Emmanuelle SOUBEYRAN, André Laurent PARODI, Ehab ABU BASHA, Nihad FEJZIC, Sabina SERIC-HARACIC, Naim Deniz AYAZ, Daniele DE MENEGHI

Partial Substitution of Barley by Destoned Olive-Waste Cake on Reproductive Performances in Ram

Naima HADJAB, Hamza RAHAB, Redouane AISSOUS, Karim BENHENIA, Boubakeur SAFSAF

Clinical Efficacy of Enrofloxacin HCl-2H2O (ENRO-C) in a Sheep Leptospirosis Outbreak

Jesus MENDOZA, Luis OCAMPO, Lilia GUTIERREZ, Hector SUMANO

Pharmacokinetics of Difloxacin in Probiotics-Treated Mycoplasma Gallisepticum Infected Chickens

Ashraf DARWISH, Hend Fouad MOHAMED, Atef MOHAMED, Attia Hassan ATTA

Molecular Detection of Middle East Respiratory Syndrome Coronavirus from Dromedary Camels Illegally Transferred to Iran

Zahra ZIAFATIKAFI, Fahimehsadat SEYEDASGARI, Hamideh NAJAFI, Masoud HASHEMZADEH, Leila AGHAEEAN, Arash GHALYANCHILANGEROUD, Laleh MOAZEMİ-GOUDARZI