Effectiveness of Reinforced 45S5 Bioglass with Yttria-Stabilized Tetragonal Zirconia and Iron in the Regeneration of Rabbit Calvarial Defects
Effectiveness of Reinforced 45S5 Bioglass with Yttria-Stabilized Tetragonal Zirconia and Iron in the Regeneration of Rabbit Calvarial Defects
Large bone defects caused by various conditions or diseases still remain one of the most challenging issues to be addressed in both human and veterinary orthopedics. Conventionally, bioglass 45S5 has been applied to reconstruct large bone defects. We fabricated yttria-stabilized tetragonal zirconia-bioglass 45S5 and iron-bioglass 45S5 composite powders to enhance osteoconductive and osteoinductive effects of conventional bioglass 45S5 in rabbit calvarial bone defects. First, these composite powders were analyzed via different in vitro analyses. For in vivo study, four circular calvarial defects of 10 animals were randomly filled with yttria-stabilized tetragonal zirconia-bioglass 45S5, iron-bioglass 45S5, and bioglass 45S5 powders or left without any treatment. Diagnostic imaging techniques and histological evaluations were conducted to assess all bone defects in different experimental groups. The cell viability and cytotoxicity analysis showed that there was no significant cytotoxic effect associated with 5 and 15 mg/mL of yttria-stabilized tetragonal zirconia-bioglass 45S5, iron- bioglass 45S5, and bioglass 45S5. In vitro results showed that the expression level of osteogenic markers increased in yttria-stabilized tetragonal zirconia-bioglass 45S5 (osteocalcin: 2.56-fold and alkaline phosphatase: 2.68-fold) and iron- bioglass 45S5 (osteocalcin: 2.44-fold and alkaline phosphatase: 3.84-fold) composite when compared to bioglass 45S5 (osteocalcin: 1.32-fold and alkaline phosphatase: 2.04-fold) and control group. The in vivo experiments confirmed the in vitro results and showed that iron- bioglass 45S5 (bone ingrowth%: 85.4 and bone volume/ total volume%: 60.2) significantly enhanced new bone formation followed by yttria-stabilized tetragonal zirconia-bioglass 45S5 (bone ingrowth %: 73.2 and bone volume/total volume (%): 53.4) when compared to bioglass 45S5 (bone ingrowth %: 35.6 and bone volume/total volume (%): 31.4) and untreated controls (bone ingrowth %: 17.2 and bone volume/total volume (%): 10.6). Based on the present results, yttria-stabilized tetragonal zirconia- and iron successfully increased the bone regenerative capacity of bioglass 45S5 which could be used as new additives in future commercial bone cement.
___
- Abedi, G., Jahanshahi, A., Fathi, M. H., Haghdost, I. S., & Veshkini, A. (2014). Study of nano-hydroxyapatite/zirconia stabilized with yttria in bone healing: Histopathological study in rabbit model. Polish Journal of Pathology , 65(1), 40–47. [CrossRef]
- Afzal, A. (2014). Implantable zirconia bioceramics for bone repair and replacement: A chronological review. Materials Express, 4(1), 1–12. [CrossRef]
- Al-Harbi, N., Mohammed, H., Al-Hadeethi, Y., Bakry, A. S., Umar, A., Hussein, M. A., Abbassy, M. A., Vaidya, K. G., Berakdar, G. A., Mkawi, E. M., & Nune, M. (2021) Silica-based bioactive glasses and their applications in hard tissue regeneration: A review. Pharmaceuticals, 14(2), 75. [CrossRef]
- Baino, F., Hamzehlou, S., & Kargozar, S. (2018). Bioactive glasses: Where are we and where are we going? Journal of Functional Biomaterials, 9(1), 25. [CrossRef]
- Balogh, E., Tolnai, E., Nagy, B., Jr., Nagy, B., Balla, G., Balla, J., & Jeney, V. (2016). Iron overload inhibits osteogenic commitment and differentiation of mesenchymal stem cells via the induction of ferritin. Biochimica et Biophysica Acta, 1862(9), 1640–1649. [CrossRef]
- Bambini, F., Santarelli, A., Putignano, A., Procaccini, M., Orsini, G., Di Iorio, D., Memè, L., Sartini, D., Emanuelli, M., & Lo Muzio, L. (2017). Use of supercharged cover screw as static magnetic field generator for bone healing, 2nd part: In vivo enhancement of bone regeneration in rabbits. Journal of Biological Regulators and Homeostatic Agents, 31(2), 481–485.
- Bargavi, P., Chitra, S., Durgalakshmi, D., Radha, G., & Balakumar, S. (2020). Zirconia reinforced bio-active glass coating by spray pyrolysis: Structure, surface topography, in-vitro biological evaluation and antibacterial activities. Materials Today Communications, 25. [CrossRef]
- Bellucci, D., Sola, A., & Cannillo, V. (2014). Bioactive glass/ZrO2 composites for orthopaedic applications. Biomedical Materials, 9(1), 015005. [CrossRef]
- Bellucci, D., Sola, A., & Cannillo, V. (2016). Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications. Journal of Biomedical Materials Research. Part A, 104(4), 1030–1056. [CrossRef]
- Best, S. M., Porter, A. E., Thian, E. S., & Huang, J. (2008). Bioceramics: Past, present and for the future. Journal of the European Ceramic Society, 28(7), 1319–1327. [CrossRef]
- Betz, R. R. (2002). Limitations of autograft and allograft: New synthetic solutions. Orthopedics, 25(Suppl. 5), S561–S570. [CrossRef]
- Bicalho, L., Baptista, C., Barboza, M., Santos, C., & Souza, R. (2011). ZrO2-Bioglass dental ceramics: Processing, structural and mechanics characterization. In C. Sikalidis (Ed.), Advances in ceramics - Electric and magnetic ceramics, bioceramics, ceramics and environment (pp. 451–472). InTech.
- Cannas, M., Indemini, E., Krajewski, A., Ravaglioli, A., & Contoli, S. (1990). In vitro observations of iron-doped bioactive glasses. Biomaterials, 11(4), 281–285. [CrossRef]
- Chiu, K. Y., Chen, K. K., Wang, Y. H., Lin, F. H., & Huang, J.-Y. (2020). Formability of Fe-doped bioglass scaffold via selective laser sintering. Ceramics International, 46(10), 16510–16517. [CrossRef]
- Coccini, T., De Simone, U., Roccio, M., Croce, S., Lenta, E., Zecca, M., Spinillo, A., & Avanzini, M. A. (2019). In vitro toxicity screening of magnetite nanoparticles by applying mesenchymal stem cells derived from human umbilical cord lining. Journal of Applied Toxicology , 39(9), 1320–1336. [CrossRef]
- Day, R. M. (2005). Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Engineering, 11(5–6), 768–777. [CrossRef]
- Dehestani, M., Adolfsson, E., & Stanciu, L. A. (2016). Mechanical properties and corrosion behavior of powder metallurgy iron-hydroxyapatite composites for biodegradable implant applications. Materials and Design, 109, 556–569. [CrossRef]
- Drago, L., Toscano, M., & Bottagisio, M. (2018). Recent evidence on bioactive glass antimicrobial and antibiofilm activity: A mini-review. Materials, 11(2), 326. [CrossRef]
- Eliaz, N., & Metoki, N. (2017). Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials, 10(4), 334. [CrossRef]
- Finkemeier, C. G. (2002). Bone-grafting and bone-graft substitutes. Journal of bone and joint surgery. American volume, 84(3), 454–464. [CrossRef] Fiume, E., Barberi, J., Verné, E., & Baino, F. (2018). Bioactive glasses: From parent 45S5 composition to scaffold-assisted tissue-healing therapies. Journal of Functional Biomaterials, 9(1), 24. [CrossRef]
- Fu, S. Y., Yu, B., Ding, H. F., Shi, G. D., & Zhu, Y. F. (2019). Zirconia incorporation in 3D printed β-Ca2SiO4 scaffolds on their physicochemical and biological property. Journal of Inorganic Materials, 34(4), 444–454. [CrossRef]
- Gao, Y., & Chang, J. (2009). Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films. Journal of Biomaterials Applications, 24(2), 119–138. [CrossRef]
- Gorustovich, A. A., Roether, J. A., & Boccaccini, A. R. (2010). Effect of bioactive glasses on angiogenesis: A review of in vitro and in vivo evidences. Tissue Engineering. Part B, Reviews, 16(2), 199–207. [CrossRef]
- Gouveia, P. F., Mesquita-Guimarães, J., Galárraga-Vinueza, M. E., Souza, J. C. M., Silva, F. S., Fredel, M. C., Boccaccini, A. R., Detsch, R., & Henriques, B. (2021). In-vitro mechanical and biological evaluation of novel zirconia reinforced bioglass scaffolds for bone repair. Journal of the Mechanical Behavior of Biomedical Materials, 114, 104164. [CrossRef]
- Graham, S. M., Leonidou, A., Aslam-Pervez, N., Hamza, A., Panteliadis, P., Heliotis, M., Mantalaris, A., & Tsiridis, E. (2010). Biological therapy of bone defects: The immunology of bone allo-transplantation. Expert Opinion on Biological Therapy, 10(6), 885–901. [CrossRef]
- Greenwald, A. S., Boden, S. D., Goldberg, V. M., Khan, Y., Laurencin, C. T., Rosier, R. N. (2001). Bone-graft substitutes: facts, fictions, and applications. Journal of bone and joint surgery. American volume. 83-A Suppl2: 98–103. [CrossRef]
- Guerado, E., & Caso, E. (2017). Challenges of bone tissue engineering in orthopaedic patients. World Journal of Orthopedics, 8(2), 87–98. [CrossRef]
- Hench, L. L., Polak, J. M., Xynos, I. D., & Buttery, L. D. K. (2000). Bioactive materials to control cell cycle. Materials Research Innovations, 3(6), 313–323. [CrossRef]
- Hou, J. T., Du, W. B., Wang, Z. H., Du, X., & Xu, C. (2018). Wet powder metallurgy process for dispersing carbon nanotubes and fabricating magnesium composite. Key Engineering Materials, 759, 86–91. [CrossRef]
- Hu, S., Zhou, Y., Zhao, Y., Xu, Y., Zhang, F., Gu, N., Ma, J., Reynolds, M. A., Xia, Y., & Xu, H. H. K. (2018). Enhanced bone regeneration and visual monitoring via superparamagnetic iron oxide nanoparticle scaffold in rats. Journal of Tissue Engineering and Regenerative Medicine, 12(4), e2085–e2098. [CrossRef]
- Jia, P., Xu, Y. J., Zhang, Z. L., Li, K., Li, B., Zhang, W., & Yang, H. (2012). Ferric ion could facilitate osteoclast differentiation and bone resorption through the production of reactive oxygen species. Journal of Orthopaedic Research, 30(11), 1843–1852. [CrossRef]
- Kargozar, S., Kermani, F., Mollazadeh Beidokhti, S., Hamzehlou, S., Verné, E., Ferraris, S., & Baino, F. (2019). Functionalization and surface modifications of bioactive glasses (BGs): Tailoring of the biological response working on the outermost surface layer. Materials, 12(22), 3696. [CrossRef]
- Kasuga, T., & Nakajima, K. (1989). Newly developed bioactive glass-ceramic composite toughened by tetragonal zirconia. Clinical Materials, 4(3), 285–294. [CrossRef]
- Katagiri, W., Kawai, T., Osugi, M., Sugimura-Wakayama, Y., Sakaguchi, K., Kojima, T., & Kobayashi, T. (2017). Angiogenesis in newly regenerated bone by secretomes of human mesenchymal stem cells. Maxillofacial Plastic and Reconstructive Surgery, 39(1), 8. [CrossRef]
- Ke, J., He, F., & Ye, J. (2017). Enhancing the bioactivity of yttria-stabilized tetragonal zirconia ceramics via grain-boundary activation. ACS Applied Materials and Interfaces, 9(19), 16015–16025. [CrossRef]
- Kirsten, A., Hausmann, A., Weber, M., Fischer, J., & Fischer, H. (2015). Bioactive and thermally compatible glass coating on zirconia dental implants. Journal of Dental Research, 94(2), 297–303. [CrossRef]
- Kopecká, I., & Svobodová, E. (2014). Methodology for infrared spectroscopy analysis of sandwich multilayer samples of historical materials. Heritage Science, 2(1), 22. [CrossRef]
- Krishnan, V., & Lakshmi, T. (2013). Bioglass: A novel biocompatible innovation. Journal of Advanced Pharmaceutical Technology and Research, 4(2), 78–83. [CrossRef]
- Li, X . Y., Liu, G. Q., Yuan, S. D., Zhang, L., & Meng, X. C. (2009). Study on the hemolysis rate and cytotoxicity test of porous ultramicron HA containing Mg. Materials Science Forum, 610–613, 1215–1218. [CrossRef]
- Li, Y. L., Zhao, W. K., Zhang, J., Xiang, C., Chen, Q., Yan, C., & Jiang, K. (2020). In vitro and in vivo evaluations of nano-hydroxyapatite/polyamide 66/ yttria-stabilized zirconia as a novel bioactive material for bone screws: Biocompatibility and bioactivity. Journal of Biomaterials Applications, 35(1), 108–122. [CrossRef]
- Lin, F., Yan, C., Zheng, W., Fan, W., Adam, C., & Oloyede, A. (2011). Preparation of mesoporous bioglass coated zirconia scaffold for bone tissue engineering. Advanced Materials Research, 365, 209–215. [CrossRef]
- Liu, H., Du, L., Zhao, Y., & Tian, W. (2015). In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application. Journal of Nanomaterials, 2015, 1–9. [CrossRef]
- Macan, J., Sikirić, M. D., Deluca, M., Bermejo, R., Baudín, C., Plodinec, M., Salamon, K., Čeh, M., & Gajović, A. (2020). Mechanical properties of zirconia ceramics biomimetically coated with calcium deficient hydroxyapatite. Journal of the Mechanical Behavior of Biomedical Materials, 111, 104006. [CrossRef]
- Marycz, K., Sobierajska, P., Roecken, M., Kornicka-Garbowska, K., Kępska, M., Idczak, R., Nedelec, J. M., & Wiglusz, R. J. (2020). Iron oxides nanoparticles (IOs) exposed to magnetic field promote expression of osteogenic markers in osteoblasts through integrin alpha-3 (INTa-3) activation, inhibits osteoclasts activity and exerts anti-inflammatory action. Journal of Nanobiotechnology, 18(1), 33. [CrossRef]
- Meng, J., Xiao, B., Zhang, Y., Liu, J., Xue, H., Lei, J., Kong, H., Huang, Y., Jin, Z., Gu, N., & Xu, H. (2013). Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Scientific Reports, 3(1), 2655. [CrossRef]
- Misch, C. M. (2010). Autogenous bone: Is it still the gold standard? Implant Dentistry, 19(5), 361. [CrossRef]
- Mozafari, M., Salahinejad, E., Shabafrooz, V., Yazdimamaghani, M., Vashaee, D., & Tayebi, L. (2013). Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry. International Journal of Nanomedicine, 8, 1665–1672. [CrossRef]
- Mulens-Arias, V., Rojas, J. M., Sanz-Ortega, L., Portilla, Y., Pérez-Yagüe, S., & Barber, D. F. (2019). Polyethylenimine-coated superparamagnetic iron oxide nanoparticles impair in vitro and in vivo angiogenesis. Nanomedicine: Nanotechnology, Biology, and Medicine, 21, 102063. [CrossRef]
- Parkes, M. A., Refson, K., d’Avezac, M., Offer, G. J., Brandon, N. P., & Harrison, N. M. (2015). Chemical descriptors of yttria-stabilized zirconia at low defect concentration: An ab initio study. Journal of Physical Chemistry A, 119(24), 6412–6420. [CrossRef]
- Peng, J., Zhao, J., Long, Y., Xie, Y., Nie, J., & Chen, L. (2019). Magnetic materials in promoting bone regeneration. Frontiers in Materials, 6(268). [CrossRef]
- Pobloth, A. M., Mersiowsky, M. J., Kliemt, L., Schell, H., Dienelt, A., Pfitzner, B. M., Burgkart, R., Detsch, R., Wulsten, D., Boccaccini, A. R., & Duda, G. N. (2019). Bioactive coating of zirconia toughened alumina ceramic implants improves cancellous osseointegration. Scientific Reports, 9(1), 16692. [CrossRef]
- Prithviraj, D. R., Deeksha, S., Regish, K. M., & Anoop, N. (2012). A systematic review of zirconia as an implant material. Indian Journal of Dental Research , 23(5), 643–649. [CrossRef]
- Raghavendra, G. M., Varaprasad, K., & Jayaramudu, T. (2015). Chapter 2 - Biomaterials: Design, development and biomedical applications. In S. Thomas, Y. Grohens & N. Ninan (Eds.), Nanotechnology applications for tissue engineering (pp. 21–44). Oxford: William Andrew Publishing.
- Rahaman, M. N., Day, D. E., Bal, B. S., Fu, Q., Jung, S. B., Bonewald, L. F., & Tomsia, A. P. (2011). Bioactive glass in tissue engineering. Acta Biomaterialia, 7(6), 2355–2373. [CrossRef]
- Roualdes, O., Duclos, M. E., Gutknecht, D., Frappart, L., Chevalier, J., & Hartmann, D. J. (2010). In vitro and in vivo evaluation of an alumina–zirconia composite for arthroplasty applications. Biomaterials, 31(8), 2043–2054. [CrossRef]
- Schünemann, F. H., Galárraga-Vinueza, M. E., Magini, R., Fredel, M., Silva, F., Souza, J. C. M., Zhang, Y., & Henriques, B. (2019). Zirconia surface modifications for implant dentistry. Materials Science and Engineering. C, Materials for Biological Applications, 98, 1294–1305. [CrossRef]
- Shahsavari-Pour, S., Aliabadi, E., Latifi, M., Zareifard, N., Namavar, M. R., & Talaei-Khozani, T. (2018). Evaluation of the possible synergic regenerative effects of platelet-rich plasma and hydroxyapatite/zirconia in the rabbit mandible defect model. Iranian Journal of Medical Sciences, 43(6), 633–644.
- Shankhwar, N., & Srinivasan, A. (2016). Evaluation of sol–gel based magnetic 45S5 bioglass and bioglass–ceramics containing iron oxide. Materials Science and Engineering. C, Materials for Biological Applications, 62, 190–196. [CrossRef]
- Sharma, K., Deo, M. N., & Kothiyal, G. P. (2012). Effect of iron oxide addition on structural properties of calcium silico phosphate glass/glass-ceramics. Journal of Non-Crystalline Solids, 358(16), 1886–1891. [CrossRef] Song, Y. G., & Cho, I. H. (2014). Characteristics and osteogenic effect of zirconia porous scaffold coated with β-TCP/HA. Journal of Advanced Prosthodontics, 6(4), 285–294. [CrossRef]
- Soon, G., Pingguan-Murphy, B., Lai, K. W., & Akbar, S. A. (2016). Review of zirconia-based bioceramic: Surface modification and cellular response. Ceramics International, 42(11), 12543–12555. [CrossRef]
- Stanic, V., Aldini, N. N., Fini, M., Giavaresi, G., Giardino, R., Krajewski, A., Ravaglioli, A., Mazzocchi, M., Dubini, B., Bossi, M. G., & Rustichelli, F. (2002). Osteointegration of bioactive glass-coated zirconia in healthy bone: An in vivo evaluation. Biomaterials, 23(18), 3833–3841. [CrossRef]
- Thévenot, J., Oliveira, H., Sandre, O., & Lecommandoux, S. (2013). Magnetic responsive polymer composite materials. Chemical Society Reviews, 42(17), 7099–7116. [CrossRef]
- Tosiriwatanapong, T., & Singhatanadgit, W. (2018). Zirconia-based biomaterials for hard tissue reconstruction. Bone and Tissue Regeneration Insights, 9, X18767886. [CrossRef]
- Verné, E., Defilippi, R., Carl, G., Vitale Brovarone, C., & Appendino, P. (2003). Viscous flow sintering of bioactive glass-ceramic composites toughened by zirconia particles. Journal of the European Ceramic Society, 23(5), 675–683. [CrossRef]
- Verrier, S., & Boccaccini, A. R. (2008). Bioactive composite materials for bone tissue engineering scaffolds. In Advances in tissue engineering (pp. 279–311). London, UK: Imperial College Press, World Scientific Publishing CO.
- Wang, Q., Chen, B., Cao, M., Sun, J., Wu, H., Zhao, P., Xing, J., Yang, Y., Zhang, X., Ji, M., & Gu, N. (2016). Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs. Biomaterials, 86, 11–20. [CrossRef]
- Wang, W., & Yeung, K. W. K. (2017). Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials, 2(4), 224–247. [CrossRef]
- Wen, J., Weinhart, M., Lai, B., Kizhakkedathu, J., & Brooks, D. E. (2016). Reversible hemostatic properties of sulfabetaine/quaternary ammonium modified hyperbranched polyglycerol. Biomaterials, 86, 42–55. [CrossRef]
- Wen, T., Du, L., Chen, B., Yan, D., Yang, A., Liu, J., Gu, N., Meng, J., & Xu, H. (2019). Iron oxide nanoparticles induce reversible endothelial-to-mesenchymal transition in vascular endothelial cells at acutely non-cytotoxic concentrations. Particle and Fibre Toxicology, 16(1), 30. [CrossRef]
- Wu, Y., Jiang, W., Wen, X., He, B., Zeng, X., Wang, G., & Gu, Z. (2010). A novel calcium phosphate ceramic-magnetic nanoparticle composite as a potential bone substitute. Biomedical Materials, 5(1), 15001. [CrossRef]
- Xia, Y., Chen, H., Zhang, F., Wang, L., Chen, B., Reynolds, M. A., Ma, J., Schneider, A., Gu, N., & Xu, H. H. K. (2018). Injectable calcium phosphate scaffold with iron oxide nanoparticles to enhance osteogenesis via dental pulp stem cells. Artificial Cells, Nanomedicine, and Biotechnology, 46(Suppl. 1), 423–433. [CrossRef]
- Ye, M., & Shi, B. (2018). Zirconia nanoparticles-induced toxic effects in osteoblast-like 3T3-E1 cells. Nanoscale Research Letters, 13(1), 353. [CrossRef] Zhang, K., & Van Le, Q. (2020). Bioactive Glass Coated zirconia for Dental Implants: A review. Journal of Composites and Compounds, 2(1), 10–17. [CrossRef]
- Zhu, Y., Zhang, Y., Wu, C., Fang, Y., Yang, J., & Wang, S. (2011). The effect of zirconium incorporation on the physiochemical and biological properties of mesoporous bioactive glasses scaffolds. Microporous and Mesoporous Materials, 143(2–3), 311–319. [CrossRef]