Agreement Among Rose Bengal, Complement Fixation Test, and iELISA in Diagnostic Discrimination of Sheep and Goat Brucellosis (Brucella melitensis)

Agreement Among Rose Bengal, Complement Fixation Test, and iELISA in Diagnostic Discrimination of Sheep and Goat Brucellosis (Brucella melitensis)

Small ruminant (sheep and goats) brucellosis caused by Brucella melitensis remains widely recognized as a major zoonosis causing profound economic, animal production, and public health consequences. Even though definite diagnosis depends on the isolation of the bacterial agent from clinical and post-mortem specimens, a presumptive diagnostic based on the assessment of specific serological response is used in routine diagnostics for the purpose of disease control or animal trade. The Rose Bengal test, the complement fixation test, the enzyme-linked immunosorbent assay, or the fluorescence polarization assay are considered by the World Animal Health Organization—OIE as a suitable serological test for diagnosing B. melitensis infection on a herd and individual animal level. The aim of this study was to assess agreement among results of the Rose Bengal, complement fixation test, and indirect enzyme-linked immunosorbent assay using small ruminant sera samples collected through brucellosis surveillance program in Bosnia and Herzegovina. A subset of these samples from non-vaccinated animals (2250) was reused and tested on each test. Agreement among test results was assessed pair vise using Kappa statistical analysis with correspondent 95% CI. Additionally, Landis–Koch scale was used for the classification of observed agreement based on established Kappa. The highest agreement was found between the complement fixation test and the Rose Bengal test (0.643), while the lowest was between the enzyme-linked immunosorbent assay and the rose Bengal test (0.533). Choice of serologic tests and testing protocols used in brucellosis surveillance programs depends on the program aim, alongside specific epidemiological, animal production, economic, and cultural circumstances.

___

  • Alton, G. G., Jones, L. M., Angus, R. D., & Verger, J. M. (1988). Techniques for the brucellosis laboratory. Institut National de la Recherche Agronomique (INRA).
  • Blasco, J. M., Garin-Bastuji, B., Marin, C. M., Gerbier, G., Fanlo, J., Jimenez de Bagues, M. P., & Cau, C. (1994a). Efficacy of different Rose Bengal and complement fixation antigens for the diagnosis of Brucella melitensis infection in sheep and goats. Veterinary Record, 134(16), 415–420. [CrossRef]
  • Blasco, J. M., Marín, C., Jiménez de Bagués, M. J., Barberán, M., Hernández, A., Molina, L., Velasco, J., Díaz, R., & Moriyón, I. (1994b). Evaluation of allergic and serological tests for diagnosing Brucella melitensis infection in sheep. Journal of Clinical Microbiology, 32(8), 1835–1840. [CrossRef]
  • Díaz-Aparicio, E., Marín, C., Alonso-Urmeneta, B., Aragón, V., Pérez-Ortiz, S., Pardo, M., Blasco, J. M., Díaz, R., & Moriyón, I. (1994). Evaluation of serological tests for diagnosis of Brucella melitensis infection of goats. Journal of Clinical Microbiology, 32(5), 1159–1165. [CrossRef]
  • Ducrotoy, M. J., Conde-Álvarez, R., Blasco, J. M., & Moriyón, I. (2016). A review of the basis of the immunological diagnosis of ruminant brucellosis. Veterinary Immunology and Immunopathology, 171, 81–102. [CrossRef] European Commission. (2001). Brucellosis in sheep and goats (Brucella melitensis). Retrieved from https://ec.europa.eu/food/system/files/2020-12/sci -com_scah_out59_en.pdf.
  • Ferreira, A. C., Cardoso, R., Travassos Dias, I., Mariano, I., Belo, A., Rolão Preto, I., Manteigas, A., Pina Fonseca, A., & Corrêa De Sá, M. I. (2003). Evaluation of a modified rose bengal test and an indirect enzyme-linked immunosorbent assay for the diagnosis of Brucella melitensis infection in sheep.
  • Veterinary Research, 34(3), 297–305. [CrossRef] Franc, K. A., Krecek, R. C., Häsler, B. N., & Arenas-Gamboa, A. M. (2018). Brucellosis remains a neglected disease in the developing world: A call for interdisciplinary action. BMC Public Health, 18(1), 125. [CrossRef]
  • Garin-Bastuji, B., & Blasco, J. M. (2018). Brucellosis (Brucella abortus, B. melitensis and B. suis) (infection with B. abortus, B. melitensis and B. suis). In E. Couacy-Hymann (Ed.), OIE terrestrial manual (pp. 355–398). OIE Garin-Bastuji, B., Blasco, J. M., Marín, C., & Albert, D. (2006). The diagnosis of brucellosis in sheep and goats, old and new tools. Small Ruminant Research, 62(1–2), 63–70. [CrossRef]
  • Gupta, V. K., Nayakwadi, S., Kumar, A., Gururaj, K., Kumar, A., & Pawaiya, R. S. (2014). Markers for the molecular diagnosis of brucellosis in animals. Advances in Animal and Veterinary Sciences, 2(3S), 31–39. [CrossRef]
  • Gusi, A. M., Bertu, W. J., Jesús de Miguel, M., Dieste-Pérez, L., Smits, H. L., Ocholi, R. A., Blasco, J. M., Moriyón, I., & Muñoz, P. M. (2019). Comparative performance of lateral flow immunochromatography, iELISA and rose bengal tests for the diagnosis of cattle, sheep, goat and swine brucellosis. PLoS Neglected Tropical Diseases, 13(6), e0007509. [CrossRef]
  • Kundel, H. L., & Polansky, M. (2003). Measurement of observer agreement. Radiology, 228(2), 303–308. [CrossRef]
  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174. [CrossRef]
  • MacMillan, A. P. A. A. (1990). Conventional serological tests. Animal Brucellosis, 206, 153–197.
  • Mandal, S. S., Duncombe, L., Ganesh, N. V., Sarkar, S., Howells, L., Hogarth, P. J., Bundle, D. R., & McGiven, J. (2017). Novel solutions for vaccines and diagnostics to combat brucellosis. American Chemical Communications Society Central Science, 3(3), 224–231. [CrossRef]
  • McGiven, J., Howells, L., Duncombe, L., Stack, J., Ganesh, N. V., Guiard, J., & Bundle, D. R. (2015). Improved serodiagnosis of bovine brucellosis by novel synthetic oligosaccharide antigens representing the capping M epitope elements of Brucella O-polysaccharide. Journal of Clinical Microbiology, 53(4), 1204–1210. [CrossRef]
  • Minas, A., Stournara, A., Christodoulopoulos, G., & Katsoulos, P. D. (2008). Validation of a competitive ELISA for diagnosis of Brucella melitensis infection in sheep and goats. Veterinary Journal, 177(3), 411–417. [CrossRef]
  • Moreno, E. (2014). Retrospective and prospective perspectives on zoonotic brucellosis. Frontiers in Microbiology, 5, 213. [CrossRef]
  • Ramírez-Pfeiffer, C., Nielsen, K., Smith, P., Marín-Ricalde, F., Rodríguez-Padilla, C., & Gomez-Flores, R. (2007). Application of the fluorescence polarization assay for detection of caprine antibodies to Brucella melitensis in areas of high prevalence and widespread vaccination. Clinical and Vaccine Immunology , 14(3), 299–303. [CrossRef]
  • Ren, J., & Peng, Q. (2021). A brief review of diagnosis of small ruminants brucellosis. Current Medicinal Chemistry, 28(22), 4569–4576. [CrossRef]
  • Sadhu, D. B., Panchasara, H. H., Chauhan, H. C., Sutariya, D. R., Parmar, V. L., & Prajapati, H. B. (2015). Seroprevalence and comparison of different serological tests for brucellosis detection in small ruminants. Veterinary World, 8(5), 561–566. [CrossRef]
  • Sergeant, E. S. G. (2018). Ausvet EpiTools – Epidemiological calculators. Retrieved from http://epitools.ausvet.com.au.
  • Seria, W., Tadese, Y. D., & Shumi, E. (2020). A review on brucellosis in small ruminants. American Journal of Zoology, 3(1), 17–25.
  • Tittarelli, M., Giovannini, A., Conte, A., Di Ventura, M., Nannini, D., & Caporale, V. (2005). The use of homologous antigen in the serological diagnosis of brucellosis caused by Brucella melitensis. Journal of Veterinary Medicine. B, Infectious Diseases and Veterinary Public Health, 52(2), 75–81. [CrossRef]
  • Yu, W. L., & Nielsen, K. (2010). Review of detection of Brucella spp. by polymerase chain reaction. Croatian Medical Journal, 51(4), 306–313. [CrossRef]
Acta Veterinaria Eurasia-Cover
  • ISSN: 2618-639X
  • Başlangıç: 1975
  • Yayıncı: İstanbul Üniversitesi-Cerrahpaşa
Sayıdaki Diğer Makaleler

Tetracycline Resistance Genes in Escherichia coli Strains Isolated From Biofilm of Drinking Water System in Poultry Farms

Majid Gholami AHANGARAN, Paniz ZINSAZ, Oveys POURMAHDI, Asiye AHMADI-DASTGERDI, Mehrdad OSTADPOUR, Mahsa SOLTANI

Proximate Composition of Leg Meat of Slow and Fast-Growing Broiler in Different Housing Systems

Enver ÇAVUŞOĞLU, Metin PETEK, Ece ÇETİN, İsmail ÇETİN, Melahat ÖZBEK

Morphometric Study on the Developing Female Reproductive System of the Dromedary (Camelus dromedarius)

Lukman Oladimeji RAJI, Shaibu Mohammed ATABO, Alhaji Zubair JAJI, Kenechukwu Tobechukwu ONWUAMA, Esther Solomon KIGIR, Sulaiman Olawoye SALAMI, Kola Yusuf SULAIMAN

Retrospective Study of Feline Oral Cavity Neoplasms and Non-neoplastic Lesions, Between 2010 and 2020

Gülay YÜZBAŞIOĞLU ÖZTÜRK, Hazal ÖZTÜRK GÜRGEN, Aydın GÜREL, Pembe Dilara KEÇİCİ

Effectiveness of Reinforced 45S5 Bioglass with Yttria-Stabilized Tetragonal Zirconia and Iron in the Regeneration of Rabbit Calvarial Defects

Maryam JALILI, Aboutorab TABATABEI NAEINI, Mohammad Saeed AHRARI KHAFI, Karen MYS, Ahad KHOSHZABAN

Morphological Forms of Mycobacterium bovis Under Conditions of Long-Term Storage at Low Above-Zero Temperature (3°C)

Volodymyr HLEBENIUK, Natalia ALEKSEEVA, Olena HAVRYLINA, Maryna BILAN, Oleksiy TKACHENKO, Natalia KOZAK

How Do We Use Molecular Knowledge in Diagnosis and Control of Pandemic Avian Viruses?

Fethiye ÇÖVEN, Kamil Tayfun ÇARLI, Özge ARDIÇLI, Serpil KAHYA DEMİRBİLEK

Agreement Among Rose Bengal, Complement Fixation Test, and iELISA in Diagnostic Discrimination of Sheep and Goat Brucellosis (Brucella melitensis)

Faruk TANDIR, Sabina ŠERIĆ-HARAČIĆ, Lejla VELIĆ, Benjamin ČENGIĆ, Nejra HADŽIMUSIĆ, Ermin ŠALJIĆ

Bioequivalence Study of Two Different Formulations of Ceftiofur Following Intramuscular Administration in Cattle

Tülay BAKIREL, Ali Haydar GÜMÜŞBAŞ

Macro-Anatomic, Cross-Sectional Anatomic, and Computerized Tomographic Examination of the Urogenital Region in Dogs

Cüneyt Tunahan MAVİŞ, Memduh GEZİCİ