One step treatment of talus osteochondral lesions with microfracture and cell free hyaluronic acid based scaffold combination

Objective: The aim of this study was to assess the effectiveness of microfracture and cell free hyaluronic acid (HA) based scaffold combination in the treatment of talus osteochondral defects (OCD). Methods: This study retrospectively evaluated the clinical results of the 20 patients (14 males and 6 females, mean age at the time of surgery: 32.9 years (range: 16e52 years)) who were treated with MFx and cell-free HA-based scaffold combination for talus OCD smaller than 1.5 cm2 and deeper than 7 mm. Results were evaluated with AOFAS and VAS scores. Also, patients' satisfaction was questioned. Results: Patients were evaluated after an average follow-up of 20.3 months. Intraoperative measurements showed that mean depth of the lesions were 10.4 ± 1.9 mm after debridement. The mean preoperative AOFAS score was 57.45 ± 9.37, which increased to 92.45 ± 8.4 postoperatively (p < 0.05). VAS score was improved from 7.05 ± 2.45 to 1.65 ± 2.20 postoperatively (p < 0.05). Conclusion: MFx and cell-free HA-based scaffold combination appear to be a safe and efficient technique that provide good clinical outcomes for lesions deeper than 7 mm.

___

1. Schachter AK, Chen AL, Reddy PD, Tejwani NC. Osteochondral lesions of the talus. J Am Acad Orthop Surg. 2005;13(3):152e158.

2. Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G. Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy. 2006;22(10):1085e1092. https://doi.org/10.1016/j.arthro.2006.05.016.

3. Gobbi A, Scotti C, Peretti GM. Scaffolding as treatment for osteochondral defects in the ankle. In: Randelli P, Dejour D, van Dijk CN, Denti M, Seil R, eds. Arthroscopy. Basic to Advanced. Berlin, Heidelberg: Springer-Verlag; 2016: 1003e1012. https://doi.org/10.1007/978-3-662-49376-2_83.

4. Ferkel RD, Dierckman BD, Phisitkul P. Arthroscopy of the foot and ankle. In: Coughlin MJ, Saltzman CL, Anderson RB, eds. Mann's Surgery of the Foot and Ankle. Philadelphia: Saunders; 2014:1725e1830.

5. van Dijk CN. Ankle Arthroscopy: Techniques Developed by Amsterdam Foot and Ankle School. Berlin: Springer-Verlag; 2014:149e186. https://doi.org/10.1007/ 978-3-642-35989-7.

6. Yasui Y, Wollstein A, Murawski CD, Kennedy JG. Operative treatment for osteochondral lesions of the talus: biologics and scaffold-based therapy. Cartilage. 2017;8(1):42e49. https://doi.org/10.1177/1947603516644298.

7. Lee KB, Park HW, Cho HJ, Seon JK. Comparison of arthroscopic microfracture for osteochondral lesions of the talus with and without subchondral cyst. Am J Sports Med. 2015;43(8):1951e1956. https://doi.org/10.1177/0363546515584755.

8. Lee DH, Lee KB, Jung ST, Seon JK, Kim MS, Sung IH. Comparison of early versus delayed weightbearing outcomes after microfracture for small to midsized osteochondral lesions of the talus. Am J Sports Med. 2012;40(9):2023e2028. https://doi.org/10.1177/0363546512455316.

9. Giannini S, Vannini F. Operative treatment of osteochondral lesions of the talar dome: current concepts review. Foot Ankle Int. 2004;25(3):168e175. https:// doi.org/10.1177/107110070402500311.

10. Robinson DE, Winson IG, Harries WJ, Kelly AJ. Arthroscopic treatment of osteochondral lesions of the talus. J Bone Joint Surg Br. 2003;85(7):989e993.

11. Zengerink M, Struijs PA, Tol JL, van Dijk CN. Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2010;18(2):238e246. https://doi.org/10.1007/s00167-009-0942-6.

12. Van Bergen CJ, de Leeuw PA, van Dijk CN. Treatment of osteochondral defects of the talus. Rev Chir Orthop Reparatrice Appar Mot. 2008;94(8):398e408. https://doi.org/10.1016/j.rco.2008.09.003.

13. Badekas T, Takvorian M, Souras N. Treatment principles for osteochondral lesions in foot and ankle. Int Orthop. 2013;37(9):1697e1706. https://doi.org/ 10.1007/s00264-013-2076-1.

14. Murawski CD, Kennedy JG. Operative treatment of osteochondral lesions of the talus. J Bone Joint Surg Am. 2013;95(11):1045e1054. https://doi.org/10.2106/ JBJS.L.00773.

15. Choi WJ, Park KK, Kim BS, Lee JW. Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med. 2009;37(10): 1974e1980. https://doi.org/10.1177/0363546509335765.

16. Chuckpaiwong B, Berkson EM, Theodore GH. Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy. 2008;24(1):106e112. https://doi.org/10.1016/j.arthro.2007.07.022.

17. Kraeutler MJ, Chahla J, Dean CS, et al. Current concepts: review update. Foot Ankle Int. 2017;38(3):331e342. https://doi.org/10.1177/1071100716677746.

18. Dahmen J, Lambers KTA, Reilingh ML, van Bergen CJA, Stufkens SAS, Kerkhoffs GMMJ. No superior treatment for primary osteochondral defects of the talus. Knee Surg Sports Traumatol Arthrosc. 2017;26(7):2142e2157. https:// doi.org/10.1007/s00167-017-4616-5.

19. Prado MP, Kennedy JG, Raduan F, Nery C. Diagnosis and treatment of osteochondral lesions of the ankle: current concepts. Rev Bras Ortop. 2016;51(5): 489e500. https://doi.org/10.1016/j.rboe.2016.08.007.

20. Vuurberg G, van Dijk CN. Osteochondral defects of the ankle. In: Randelli P, Dejour D, van Dijk CN, Denti M, Seil R, eds. Arthroscopy. Basic to Advanced. Berlin Heidelberg: Springer-Verlag; 2016:985e996. https://doi.org/10.1007/ 978-3-662-49376-2.

21. Angthong C, Yoshimura I, Kanazawa K, et al. Critical three-dimensional factors affecting outcome in osteochondral lesion of the talus. Knee Surg Sports Traumatol Arthrosc. 2013;21(6):1418e1426. https://doi.org/10.1007/s00167-013-2364-8.

22. Yoshimura I, Kanazawa K, Takeyama A, et al. Arthroscopic bone marrow stimulation techniques for osteochondral lesions of the talus: prognostic factors for small lesions. Am J Sports Med. 2013;41(3):528e534. https://doi.org/ 10.1177/0363546512472979.

23. Deng Z, Jin J, Zhao J, Xu H. Cartilage defect treatments: with or without cells? Mesenchymal stem cells or chondrocytes? Traditional or matrix-assisted? A systematic review and meta-analyses. Stem Cells Int. 2016;2016:1e14. https:// doi.org/10.1155/2016/9201492, 9201492.

24. Ferkel RD, Zanotti RM, Komenda GA, et al. Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results. Am J Sports Med. 2008;36(9):1750e1762. https://doi.org/10.1177/0363546508316773.

25. Hegewald AA, Ringe J, Bartel J, et al. Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study. Tissue Cell. 2004;36(6):431e438. https://doi.org/10.1016/ j.tice.2004.07.003.

26. Battaglia M, Rimondi E, Monti C, et al. Validity of T2 mapping in characterization of the regeneration tissue by bone marrow derived cell transplantation in osteochondral lesions of the ankle. Eur J Radiol. 2011;80(2):e132ee139. https://doi.org/10.1016/j.ejrad.2010.08.008.

27. Giannini S, Buda R, Cavallo M, et al. Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury. 2010;41(11):1196e1203. https://doi.org/10.1016/j.injury.2010.09.028.

28. Giannini S, Buda R, Battaglia M, et al. One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction. Am J Sports Med. 2013;41(3):511e518. https://doi.org/10.1177/ 0363546512467622.

29. Brouwer KM, van Rensch P, Harbers VE, et al. Evaluation of methods for the construction of collagenous scaffolds with a radial pore structure for tissue engineering. J Tissue Eng Regen Med. 2011;5(6):501e504. https://doi.org/ 10.1002/term.397.

30. Efe T, Theisen C, Fuchs-Winkelmann S, et al. Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. Knee Surg Sports Traumatol Arthrosc. 2012;20(10):1915e1922. https://doi.org/ 10.1007/s00167-011-1777-5.

31. Kon E, Roffi A, Filardo G, Tesei G, Marcacci M. Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy. 2015;31(4):767e775. https://doi.org/10.1016/ j.arthro.2014.11.017.

32. Pot MW, Gonzales VK, Buma P, et al. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies. PeerJ. 2016;8(4):2243e2269. https://doi.org/10.7717/peerj.2243.

33. Lopa S, Madry H. Bioinspired scaffolds for osteochondral regeneration. Tissue Eng A. 2014;20(15e16):2052e2076. https://doi.org/10.1089/ ten.tea.2013.0356.

34. Han SH, Lee JW, Lee DY, Kang ES. Radiographic changes and clinical results of osteochondral defects of the talus with and without subchondral cysts. Foot Ankle Int. 2006;27(12):1109e1114. https://doi.org/10.1177/107110070602701218.

35. Jung HG, Carag JA, Park JY, Kim TH, Moon SG. Role of arthroscopic microfracture for cystic type osteochondral lesions of the talus with radiographic enhanced MRI support. Knee Surg Sports Traumatol Arthrosc. 2011;19(5): 858e862. https://doi.org/10.1007/s00167-011-1411-6.
Acta Orthopaedica et Traumatologica Turcica-Cover
  • ISSN: 1017-995X
  • Başlangıç: 2015
  • Yayıncı: Türk Ortopedi ve Travmatoloji Derneği
Sayıdaki Diğer Makaleler

One step treatment of talus osteochondral lesions with microfracture and cell free hyaluronic acid based scaffold combination

Necip Selçuk YONTAR, Lercan ASLAN, ATA CAN, Tahir ÖĞÜT

Magnetic resonance imaging of patients with lateral epicondylitis: Relationship between pain and severity of imaging features in elbow joints

Yoon Ki CHA, Seon-Jeong KİM, Noh Hyuck PARK, Joon Yub KIM, Joo-Hak KIM, Ji Yeon PARK

Assessing the risk of asymptomatic dysplasia in parents of children with developmental hip dysplasia

Tacettin AYANOĞLU, Muhammet Baybars ATAOGLU, NİL TOKGÖZ, Elif ERSÖZ, HAKAN ATALAR, Sacit TURANLI

Which patients are less likely to improve after arthroscopic rotator cuff repair?

Barak HAVİV, Tal Frenkel RUTENBERG, Lee YAARİ, Muhammad KHATİB, Ehud RATH, Mustafa YASSİN

Continuous adductor canal block following total knee arthroplasty provides a better analgesia compared to single shot: A prospective randomized controlled trial

UMUT CANBEK, ULAŞ AKGÜN, NEVRES HÜRRİYET AYDOĞAN, CEM YALIN KILINÇ, Ali İhsan UYSAL

Predatory journal preference in the field of Orthopaedics and Traumatology in Turkey

Muhittin ŞENER, Cumhur Deniz DAVULCU, Mesut TAHTA, İzge GÜNAL

Superficial radial nerve compression due to fibroma of the brachioradialis tendon sheath: A case report

Sercan CAPKİN, Tufan KALELİ

The safety and the efficacy of computed tomography guided percutaneous radiofrequency ablation of osteoid osteoma

Cennet ŞAHİN, Yunus ÖÇ, Naim EDİZ, Mustafa ALTINAY, Aylin HASANEFENDİOĞLU BAYRAK

Postoperative mechanical alignment analysis of total knee replacement patients operated with 3D printed patient specific instruments: A Prospective Cohort Study

HALİL CAN GEMALMAZ, Kerim SARIYILMAZ, Okan OZKUNT, Mustafa SUNGUR, İbrahim KAYA, FATİH DİKİCİ

Dual-mobility cups in revision acetabular reconstructions: Short-term outcomes in high-risk patients for instability

Göksel DİKMEN, Vahit Emre ÖZDEN, Kayahan KARAYTUĞ, Remzi TÖZÜN