Biomechanical effects of sequential resection of the posterior ligamentous complex on intradiscal pressure and resistance to compression forces

Objective: The aim of this biomechanical experimental study was to evaluate the resistance of each posterior ligamentous complex structure of the thoracic and lumbar spine to compression forces and to measure the shifting load to the intervertebral disc when each PLC structure was interrupted. Method: The study was conducted on 4 groups for thoracic and lumbar region as intact, supraspinous ligament interrupted, interspinous ligament/ligamentum flavum combination interrupted and facet joint capsule interrupted. Pre and post anterior vertebral body height, the highest compression force and pressure changes in the intervertebral disc during 40 N loading were measured. Results: A significantly different degree of resistance to compression force was determined in each posterior ligamentous complex structure in the thoracic and lumbar spine samples. The combination of interspinous ligament and ligamentum flavum was found to be the most effective structure to resist compression forces (p ¼ 0.001 in both groups). The effect of the supraspinous ligament in thoracic and lumbar segments was found to be similar to that of the interspinous ligament and ligamentum flavum combination (p ¼ 0.008 and p ¼ 0.006, respectively). The least effective structure was observed to be the facet joint capsule. Compression forces were significantly increased in the intervertebral disc as a result of the disruption of supraspinous ligament (p ¼ 0.0032 and p ¼ 0.0029, respectively in thoracic and lumbar segments) and combination of interspinous ligament/ligamentum flavum (p ¼ 0.0019 and p ¼ 0.0021, respectively in thoracic and lumbar segments). Conclusion: The interspinous ligament/ligamentum flavum combination and supraspinous ligament are the largest contributor to resisting applied compression moments in the sheep thoracic and lumbar spine. As a result of the loss of resistance to compression forces, there will be a shift of a great proportion of this force onto the intervertebral disc

___

1. Magerl F, Aebi M, Gertzbein S, Harms J, Nazarian S. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J. 1994;3(4):184e201. https:// doi.org/10.1007/bf02221591.

2. Vaccaro AR, Lehman RA, Hurlbert RJ, et al. A new classification of thoracolumbar injuries the importance of injury morphology , the integrity of the posterior ligamentous complex, and neurologic status. Spine (Phila Pa 1976). 2005;30(20): 2325e2333. https://doi.org/10.1097/01.brs.0000182986.43345.cb.

3. Lee J, Vaccaro A, Lim M, Oner F, Hulbert R. Thoracolumbar Injury Classification and Severity Score : A New Paradigm for the Treatment of Thoracolumbar Spine Trauma. J Orthop Sci. 2005;10(6):671e675. https://doi.org/10.1007/ s00776-005-0956-y.

4. James K, Wenger K, Schlegel J, Dunn H. Biomechanical evaluation of the stability of thoracolumbar burst fractures. Spine (Phila Pa 1976). 1994;19(15): 1731e1740. https://doi.org/10.1097/00007632-199408000-00013.

5. Oner F, Van Gils A, Faber J, Dhert W, Verbout A. Some complications of common treatment schemes of thoracolumbar spine fractures can be predicted with magnetic resonance imaging: prospective study of 53 patients with 71 fractures. Spine (Phila Pa 1976). 2002;27(6):629e636. https://doi.org/10.1097/ 00007632-200203150-00012.

6. Rihn J a, Yang N, Fisher C, et al. Using magnetic resonance imaging to accurately assess injury to the posterior ligamentous complex of the spine: a prospective comparison of the surgeon and radiologist. J Neurosurg Spine. 2010;12(4): 391e396. https://doi.org/10.3171/2009.10.SPINE08742.

7. Whang P, Vaccaro A, Poelstra K, Patel A, Anderson D, Albert T. The influence of fracture mechanism and morphology on the reliability and validity of two novel thoracolumbar injury classification systems. Spine (Phila Pa 1976). 2007;32(7):791e795. https://doi.org/10.1097/01.brs.0000258882.96011.47.

8. Vaccaro AR, Rihn JA, Saravanja D, et al. Injury of the posterior ligamentous complex of the thoracolumbar spine: a prospective evaluation of the diagnostic accuracy of magnetic resonance imaging. Spine (Phila Pa 1976). 2009;34(23): E841eE847. https://doi.org/10.1097/BRS.0b013e3181bd11be.

9. Callaghan JP, McGill SM. Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force. Clin Biomech (Bristol, Avon). 2001;16(1):28e37. https://doi.org/10.1016/ S0268-0033(00)00063-2.

10. Izzo R, Guarnieri G, Guglielmi G, Muto M. Biomechanics of the spine. Part I: spinal stability. Eur J Radiol. 2013;82(1):118e126. https://doi.org/10.1016/ j.ejrad.2012.07.024.

11. Chazal J, Tanguy A, Bourges M, et al. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J Biomech. 1985;18(3):167e176. https://doi.org/10.1016/0021-9290(85) 90202-7.

12. Li Y, Shen Z, Huang M, Wang X. Stepwise resection of the posterior ligamentous complex for stability of a thoracolumbar compression fracture. Med (United States). 2017;96(35):1e6. https://doi.org/10.1097/MD.0000000000007873.

13. Gillespie KA, Dickey JP. Biomechanical role of lumbar spine ligaments in flexion and Extension : determination using a parallel linkage robot and a porcine model complex. Spine (Phila Pa 1976). 2004;29(11):1208e1216. https:// doi.org/10.1097/00007632-200406010-00010.

14. Heuer F, Schmidt H, Klezl Z, Claes L, Wilke H-J. Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J Biomech. 2007;40(2):271e280. https://doi.org/10.1016/j.jbiomech.2006.01.007.

15. Heuer F, Schmidt H, Wilke HJ. Stepwise reduction of functional spinal structures increase disc bulge and surface strains. J Biomech. 2008;41(9): 1953e1960. https://doi.org/10.1016/j.jbiomech.2008.03.023.

16. Heuer F, Schmidt H, Claes L, Wilke H-J. Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure. J Biomech. 2007;40(4):795e803. https://doi.org/10.1016/j.jbiomech.2006.03.016.

17. Alanay A, Yazici M, Acaroglu E, Turhan E. Course of nonsurgical management of burst fractures with intact posterior ligamentous complex : an MRI study. Spine (Phila Pa 1976). 2004;29(21):2425e2431. https://doi.org/10.1097/ 01.brs.0000143169.80182.ac.

18. Cain C, Fraser R. Bony and vascular anatomy of the normal cervical spine in the sheep. Spine (Phila Pa 1976). 1995;20(7):759e765. https://doi.org/10.1097/ 00007632-199504000-00002.

19. Wilke H, Claes L, Kettler A. Are the sheep spines a valid biomechanical model for human spines? Spine (Phila Pa 1976). 1997;22(20):2365e2374. https:// doi.org/10.1097/00007632-199710150-00009.

20. Pizones J, Zúniga L, S ~ anchez-Mariscal F, Alvarez P, Gomez-Rice A, Izquierdo E. MRI study of post-traumatic incompetence of posterior ligamentous complex: importance of the supraspinous ligament. Prospective study of 74 traumatic fractures. Eur Spine J. 2012;21(11):2222e2231. https://doi.org/10.1007/ s00586-012-2403-z.

21. Hukins DW, Kirby MC, Skioryn TA, et al. Comprasion of structure, mechanical properties, and functions of lumbar ligaments. Spine (Phila Pa 1976). 1990;15(8):787e795. https://doi.org/10.1097/00007632-199008000-00010.
Acta Orthopaedica et Traumatologica Turcica-Cover
  • ISSN: 1017-995X
  • Başlangıç: 2015
  • Yayıncı: Türk Ortopedi ve Travmatoloji Derneği
Sayıdaki Diğer Makaleler

Double ulnar osteomy for the treatment of congenital radial head dislocation

Qiang JİE, Xiaoju LİANG, Xiaowei WANG, Yongtao WU, Ge WU, Bing WANG

Clinical and radiological outcomes of conservative treatment for unilateral sagittal split fractures of C1 lateral mass

Whoan Jeang KİM, Jong-Beom PARK, Heui-Jeon PARK, Kyung-Jin SONG, Woo-Kie MİN

Percutaneous fixation of Lisfranc joint injuries: A systematic review of the literature

Ioannis M. STAVRAKAKİS, George E. MAGARAKİS, Zacharias CHRİSTOFORAKİS

Association between calcium-phosphorus balance and adolescent idiopathic scoliosis: A meta-analysis

Qingling ZHU, Junwei CHEN, Changxian CHEN, Hanlong WANG, Shengping YANG

Meta-analysis of the association of IL1-RN variable number of tandem repeats polymorphism with osteoarthritis risk

Bo XU, Xiao-Qing SHİ, Run-lin XING, Yan-Cheng XİAO, Peng WU, Pei-Min WANG

Locally administrated single-dose teriparatide affects critical-size rabbit calvarial defects: A histological, histomorphometric and micro-CT study

TAHA ÖZER, Özgür BAŞLARLI, ALPER AKTAŞ, EMRE BARIŞ, HAKAN HAMDİ ÇELİK, Mert OCAK

Osteolysis is observed around both bioabsorbable and nonabsorbable anchors on serial magnetic resonance images of patients undergoing arthroscopic rotator cuff repair

Ivan MİCİC, Erica KHOLİNNE, Jae-Man KWAK, Kyoung-Hwan KOH, In-Ho JEON

The effects of cryopreserved human amniotic membrane on fracture healing: Animal study

ENES SARI, MEHMET YALÇINOZAN, Barış POLAT, Hanife ÖZKAYALAR

Prevalence of anterior knee pain after patellar retention total knee arthroplasty: Comparison of patients with rheumatoid arthritis versus primary osteoarthritis

Tuna PEHLİVANOĞLU, HALİL İBRAHİM BALCI, Mehmet DEMİREL, Mehmet Fevzi CAKMAK, Önder YAZICIOĞLU, ÖNDER İSMET KILIÇOĞLU

The thickness of heel fat-pad in patients with plantar fasciitis

Oktay BELHAN, Mehmet KAYA, MURAT GÜRGER