Tiroid Patolojisinde Proteomik Yaklaşımlar

Tiroid bezinde görülen kanserler en sık görülen endokrin maligniteleri oluşturmaktadır ve bu kanserlerin insidansı son yıllarda önemli ölçüde artmıştır. Günümüzde çok sık rastlanan tiroid nodüllerinin histopatolojik tanısının konulmasını sağlayan en güvenilir ve ucuz yöntem İnce İğne Aspirasyon Biyopsisi’dir İİAB . Ancak, ayırıcı tanıda ayrım kriterlerinin yeterli olmayışı bazı nodüllerin histopatolojik tanılarının başarıyla konulamamasına neden olmaktadır. Bu amaçla son 40 yıldan beri birçok moleküler teknik geliştirilmiş ve farklı moleküler hedeflerin tiroid kanserinin ayırıcı tanısında kullanılması amaçlanmıştır. Ayırıcı tanıya katkısı olabileceği düşünülen genetik mutasyonlar ya da hücre yüzey belirteçleri prevelans farklılıkları nedeniyle klinikte yaygın olarak kullanılmamaktadır

Proteomics In Thyroid Pathology

Thyroid cancer is the most common endocrine malignancy, of which the incidence has increased worldwide in the past years. The most reliable and inexpensive method for establishing the histopathological diagnosis of thyroid nodules is Fine Needle Aspiration Biopsy FNAB . However, the lack of discrimination distinctive criteria in differential diagnosis leads to the failure of the successful diagnosis of some nodules. For this purpose, several molecular techniques have been developed and several molecules were targeted for the differential diagnosis of thyroid nodules. However, genetic mutations or cell surface markers that might contribute to the differential diagnosis are not widely used due to the differences in prevalence

___

Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM. Trends in Thyroid Cancer Incidence and Mortality in the United States, 1974-2013. JAMA. United States; 2017;317:1338–48. [CrossRef]

Zevallos JP, Hartman CM, Kramer JR, Sturgis EM, Chiao EY. Increased thyroid cancer incidence corresponds to increased use of thyroid ultrasound and fine-needle aspiration: a study of the Veterans Affairs health care system. Cancer. United States; 2015;121:741–6. [CrossRef]

Furukawa K, Preston D, Funamoto S, Yonehara S, Ito M, Tokuoka S, et al. Long-term trend of thyroid cancer risk among Japanese atomic- bomb survivors: 60 years after exposure. Int J cancer. 2013;132:1222– 6. [CrossRef]

Nikiforov YE. Radiation-induced thyroid cancer: what we have learned from chernobyl. Endocr Pathol. 2006;17:307–17.

T.C. Sağlık Bakanlığı HSGMKDB. Türkiye’de Kanser Kayıtçılığı [Internet]. Available from: http://kanser.gov.tr/daire-faaliyetleri/ kanser-kayitciligi/108-türkiyede-kanser-kayitcigi.html

Grogan RH, Mitmaker EJ, Clark OH. The evolution of biomarkers in thyroid cancer-from mass screening to a personalized biosignature. Cancers (Basel). 2010;2:885–912. [CrossRef]

Magdeldin S, Enany S, Yoshida Y, Xu B, Zhang Y, Zureena Z, et al. Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis. Clin Proteomics. 2014;11:16. [CrossRef]

Appella E, Padlan EA, Hunt DF. Analysis of the structure of naturally processed peptides bound by class I and class II major histocompatibility complex molecules.. EXS. 1995;73:105–19.

Ucal Y, Durer ZA, Atak H, Kadioglu E, Sahin B, Coskun A, et al. Clinical applications of MALDI imaging technologies in cancer and neurodegenerative diseases. Biochim Biophys Acta. 2017;1865:795– 816. [CrossRef]

Brown LM, Helmke SM, Hunsucker SW, Netea-Maier RT, Chiang SA, Heinz DE, et al. Quantitative and qualitative differences in protein expression between papillary thyroid carcinoma and normal thyroid tissue. Mol Carcinog. 2006;45:613–26. [CrossRef]

Donato R, Sorci G, Giambanco I. S100A6 protein: functional roles. Cell Mol Life Sci. 2017;74:2749–60. [CrossRef]

Netea-Maier RT, Hunsucker SW, Hoevenaars BM, Helmke SM, Slootweg PJ, Hermus AR, et al. Discovery and validation of protein abundance differences between follicular thyroid neoplasms. Cancer Res. 2008;68:1572–80. [CrossRef]

Krause K, Karger S, Schierhorn A, Poncin S, Many M-C, Fuhrer D. Proteomic profiling of cold thyroid nodules. Endocrinology. 2007;148:1754–63. [CrossRef]

Puxeddu E, Susta F, Orvietani PL, Chiasserini D, Barbi F, Moretti S, et al. Identification of differentially expressed proteins in papillary thyroid carcinomas with V600E mutation of BRAF. Proteomics - Clin Appl. 2007;1:672–80. [CrossRef]

Sofiadis A, Becker S, Hellman U, Hultin-Rosenberg L, Dinets A, Hulchiy M, et al. Proteomic profiling of follicular and papillary thyroid tumors. Eur J Endocrinol. 2012;166:657–67. [CrossRef]

Martinez-Aguilar J, Clifton-Bligh R, Molloy MP. Proteomics of thyroid tumours provides new insights into their molecular composition and changes associated with malignancy. Sci Rep. 2016;6:23660. [CrossRef]

Järvinen TH, Prince S. Decorin: A Growth Factor Antagonist for Tumor Growth Inhibition. Biomed Res Int. 2015;2015:654765. [CrossRef]

Ucal Y, Eravci M, Tokat F, Duren M, Ince U, Ozpinar A. Proteomic analysis reveals differential protein expression in variants of papillary thyroid carcinoma. EuPA Open Proteomics. 2017;17:1-6. [CrossRef]

Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F4, Thompson LD al et. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: A paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2:1023–9. [CrossRef]

Meding S, Nitsche U, Balluff B, Elsner M, Rauser S, Schone C, et al. Tumor classification of six common cancer types based on proteomic profiling by MALDI imaging. J Proteome Res. 2012;11:1996–2003. [CrossRef]

Nipp M, Elsner M, Balluff B, Meding S, Sarioglu H, Ueffing M, et al. S100-A10, thioredoxin, and S100-A6 as biomarkers of papillary thyroid carcinoma with lymph node metastasis identified by MALDI Imaging. J Mol Med. 2012;90:163–74. [CrossRef]

Min K, Bang J, Kim KP, Kim W, Lee SH, Shanta SR, et al. Imaging mass spectrometry in papillary thyroid carcinoma for the identification and validation of biomarker proteins. J Korean Med Sci. 2014;29:934– 40. [CrossRef]

Galli M, Pagni F, De Sio G, Smith A, Chinello C, Stella M, et al. Proteomic profiles of thyroid tumors by mass spectrometry-imaging on tissue microarrays. Biochim Biophys Acta. 2017;1865:817–27. [CrossRef]

Pagni F, De Sio G, Garancini M, Scardilli M, Chinello C, Smith AJ, et al. Proteomics in thyroid cytopathology: Relevance of MALDI-imaging in distinguishing malignant from benign lesions. Proteomics. 2016;16:1775–84. [CrossRef]

Pietrowska M, Diehl HC, Mrukwa G, Kalinowska-Herok M, Gawin M, Chekan M, et al. Molecular profiles of thyroid cancer subtypes: Classification based on features of tissue revealed by mass spectrometry imaging. Biochim Biophys Acta. Netherlands; 2017;1865:837–45.

Krause K, Jeßnitzer B, Fuhrer D. Proteomics in thyroid tumor research. J Clin Endocrinol Metab. 2009;94:2717–24. [CrossRef]

Acıbadem Üniversitesi Sağlık Bilimleri Dergisi-Cover
  • ISSN: 1309-470X
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: ACIBADEM MEHMET ALİ AYDINLAR ÜNİVERSİTESİ