Yüzeyi ZnO Nanopartikülleri ile Kaplanmış Demir Matrisli Malzemelerin Karakterizasyonu ve Mekanik Özelliklerinin İncelenmesi

Bu çalışmanın amacı toz metalürjisi ile demir ve demir-karbon alaşım malzemelerinin üretilmesi ve bu malzemelerin çinko oksit (ZnO) ile kaplanmasıyla mekanik özelliklerdeki artışı ortaya çıkarmaktır. Bu amaçla, demir ve demir-karbon alaşımı malzemeler toz metalürjisi ile üretilmiştir. Karbon malzeme olarak, aktif karbon, grafit, grafen, karbon nanotüp, vb. gibi yaygın kullanılan karbon malzemelere alternatif olabilecek, glukozdan sentezlenen hidrotermal karbonlar kullanılmıştır. Karbonlu ve karbonsuz demir malzemelerin yüzeyi SILAR metoduyla yaklaşık 200±17 nm uzunluğundaki çinko oksit partikülleri tarafından kaplanmıştır. Bu kompozitlerin yapısı SEM, SEM-EDX ve XRD analizleri ile karakterize edilmiştir. Malzemelerin mekanik özelliklerine ZnO kaplamanın etkisi ise sertlik ve korozyon testleri ile incelenmiştir. Bu sonuçlara göre, ZnO kaplanmış kompozitlerin hem sertlik değerlerinde (%44 ve %73) hem de korozyon dayanımlarında (%118 ve %60) kaplamasız malzemelere kıyasla önemli derece artış meydana gelmiştir.

Characterization and Mechanical Properties of Iron Matrix Materials Coated with ZnO Nanoparticles

The aim of this study to produce iron and iron-carbon alloys materials by powder metallurgy, and to find out increment of mechanical properties of these materials via zinc oxide (ZnO) coating. For this purpose, iron and iron-carbon alloy materials were produced by powder metallurgy. As the carbon material, hydrothermal carbons derived from glucose were used as an alternative to commonly used carbon materials such as activated carbon, graphite, graphene, carbon nanotube etc. The surface of carbonaceous and carbonless iron materials was coated by ZnO particles around 200±17 nm length by SILAR method. The structure of these composites was characterized by SEM, SEM-EDX and XRD analyzes. The effect of ZnO coating on the mechanical properties of the materials was examined by hardness and corrosion tests. According to these results, both hardness values (44% and 73%) and corrosion resistance (118% and 60%) of ZnO coated composites increased significantly compared to uncoated materials.

___

  • [1] L. Zhong, Y. Xu, M. Hojamberdiev, J. Wang, and J. Wang, ‘In situ fabrication of titanium carbide particulatesreinforced iron matrix composites’, Materials & design, vol. 32, no. 7, pp. 3790–3795, 2011.
  • [2] X. Zhang, F. Ma, K. Ma, and X. Li, ‘Effects of graphite content and temperature on microstructure and mechanical properties of Iron-based powder metallurgy parts’, Journal of Materials Science Research, vol. 1, no. 4, p. 48, 2012.senin yazmana ferek yok
  • [3] M. A. Erden, S. Gündüz, M. Türkmen, and H. Karabulut, ‘Microstructural characterization and mechanical properties of microalloyed powder metallurgy steels’, Materials Science and Engineering: A, vol. 616, pp. 201–206, 2014.
  • [4] M. Türkmen, H. Karabulut, M. A. Erden, and S. Gündüz, ‘EFFECT OF TIN ADDITION ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF PM STEELS’, Technological Applied Sciences, vol. 12, no. 4, pp. 178–184.
  • [5] C. Krishnamurthy Srinivasa, C. Suryanarayana Ramesh, and S. K. Prabhakar, ‘Blending of iron and silicon carbide powders for producing metal matrix composites by laser sintering process’, Rapid Prototyping Journal, vol. 16, no. 4, pp. 258–267, 2010.
  • [6] P. Gupta, D. Kumar, M. A. Quraishi, and O. Parkash, ‘Corrosion behavior of Al2O3 reinforced Fe metal matrix nanocomposites produced by powder metallurgy technique’, Advanced Science, Engineering and Medicine, vol. 5, no. 4, pp. 366–370, 2013.
  • [7] L. Xie, X. Xiong, Y. Zeng, and Y. Wang, ‘The wear properties and mechanism of detonation sprayed iron-based amorphous coating’, Surface and Coatings Technology, vol. 366, pp. 146–155, 2019.
  • [8] S. Shi, Y. Zhao, Z. Zhang, and L. Yu, ‘Corrosion protection of a novel SiO2@ PANI coating for Q235 carbon steel’, Progress in Organic Coatings, vol. 132, pp. 227–234, 2019.
  • [9] D. Kallappa and V. T. Venkatarangaiah, ‘Synthesis of CeO2 doped ZnO nanoparticles and their application in Zncomposite coating on mild steel’, Arabian Journal of Chemistry, 2018.
  • [10] L. Exbrayat et al., ‘Electrodeposition of zinc–ceria nanocomposite coatings in alkaline bath’, Journal of Solid State Electrochemistry, vol. 18, no. 1, pp. 223–233, 2014.
  • [11] A. Mahmood and A. Naeem, ‘Sol-Gel-Derived Doped ZnO Thin Films: Processing, Properties, and Applications’, Recent Applications in Sol-Gel Synthesis, pp. 169–193, 2017.
  • [12] L. Znaidi, ‘Sol–gel-deposited ZnO thin films: A review’, Materials Science and Engineering: B, vol. 174, no. 1–3, pp. 18–30, 2010.
  • [13] C. Duman and H. Guney, ‘Influence of annealing and optical aging on optical and structural properties of ZnO thin films obtained by SILAR method’, Lithuanian Journal of Physics, vol. 57, no. 4, 2017.
  • [14] Ş. Duman and B. Özkal, ‘Farklı Püskürtmeli Kurutucu Proses Parametreleri ve Çözelti Konsantrasyonunda ZnO Nanopartiküllerin Sentezlenmesi ve Karakterizasyonu’, Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, vol. 7, no. 2, pp. 324–331.
  • [15] A. Raidou et al., ‘Characterization of ZnO thin films grown by SILAR method’, Open Access Library Journal, vol. 1, no. 3, 2014.
  • [16] H. Simsir, N. Eltugral, and S. Karagoz, ‘Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization’, Bioresource technology, vol. 246, pp. 82–87, 2017.
  • [17] M.-M. Titirici, R. J. White, C. Falco, and M. Sevilla, ‘Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage’, Energy & Environmental Science, vol. 5, no. 5, pp. 6796– 6822, 2012.
  • [18] P.-Y. Lee, S.-P. Chang, and S.-J. Chang, ‘Synthesis and optical properties of ZnO thin films prepared by SILAR method with ethylene glycol’, Advances in nano research, vol. 1, no. 2, pp. 93–103, 2013.
  • [19] P. U. Londhe and N. B. Chaure, ‘Effect of pH on the properties of electrochemically prepared ZnO thin films’, Materials Science in Semiconductor Processing, vol. 60, pp. 5–15, 2017.
  • [20] W.-S. Lin, H.-M. Lin, H.-H. Chen, Y.-K. Hwu, and Y.-J. Chiou, ‘Shape effects of iron nanowires on hyperthermia treatment’, Journal of Nanomaterials, vol. 2013, p. 9, 2013.
  • [21] O. S. Fayomi, ‘Effect of composite particulate reinforcement on the morphology, anti-corrosion and hardness properties of fabricated Zn-ZnO coatings’, J. Mater. Environ. Sci., vol. 6, pp. 963–968, 2015.
  • [22] K. P. Ananth, J. Sun, and J. Bai, ‘An innovative approach to manganese-substituted hydroxyapatite coating on zinc oxide–coated 316L SS for implant application’, International journal of molecular sciences, vol. 19, no. 8, p. 2340, 2018.
  • [23] Y.-S. Kim and J.-G. Kim, ‘Corrosion behavior of pipeline carbon steel under different iron oxide deposits in the district heating system’, Metals, vol. 7, no. 5, p. 182, 2017.
  • [24] E. Otero, A. Pardo, M. V. Utrilla, E. Saenz, and J. F. Alvarez, ‘Corrosion behaviour of AISI 304L and 316L stainless steels prepared by powder metallurgy in the presence of sulphuric and phosphoric acid’, Corrosion Science, vol. 40, no. 8, pp. 1421–1434, 1998.
  • [25] H. Simsir, Y. Akgul, and M. A. Erden, ‘Hydrothermal carbon effect on iron matrix composites produced by powder metallurgy’, Materials Chemistry and Physics, p. 122557, 2019.
  • [26] A. Ayyagari, V. Hasannaeimi, H. S. Grewal, H. Arora, and S. Mukherjee, ‘Corrosion, erosion and wear behavior of complex concentrated alloys: a review’, Metals, vol. 8, no. 8, p. 603, 2018.
  • [27] Y. Y. Li, Z. Z. Wang, X. P. Guo, and G. A. Zhang, ‘Galvanic corrosion between N80 carbon steel and 13Cr stainless steel under supercritical CO2 conditions’, Corrosion Science, vol. 147, pp. 260–272, 2019.
ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE-Cover
  • ISSN: 2147-4575
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Akademik Perspektif Derneği