Tasarımın Uzun Boyun Seramik Femoral Baş Protezinin Yüksek Kırılma Oranına Katkısının Sonlu Elemanlar Analizi ile Araştırılması

Üstün aşınma direncine sahip olan seramikler, genç hastaların femur başı protezi için en iyi malzeme seçeneklerindendir. Bununla birlikte, seramiklerin doğal dezavantajları kırılganlıklarıdır. Bu nedenle, seramik femur başlarının üretim ve tasarım faktörleri dikkatlice düşünülmelidir. Aksi takdirde, yüksek kırılma oranına bağlı olarak, 2001 yılında seramik femoral başların geri çağrılması olayında olduğu gibi daha ciddi bir soruna neden olabilir. Her ne kadar geri çağrılan bu seramik başların yüksek kırılma oranları, temel olarak imalat işlemindeki bir değişiklikle ilişkilendirilmiş olsa da, aynı partide üretilen uzun boyun tasarımlı seramik başların neden kısa boyun tasarımlı seramik başlara göre daha yüksek kırılma oranına sahip oldukları konusunda kesin bir tespit yapılamamış ve bu konuda bir mekanik analiz bulunmamaktadır. Bu çalışmanın amacı, tasarım faktörünün uzun boyunlu seramik femoral başlarının daha yüksek kırılma oranına olası katkısını belirlemek için sonlu elemanlar analizi kullanılarak iki farklı seramik femur başı (kısa ve uzun boyunlu seramik baş) üzerindeki gerilme dağılımının analizini yapmaktır.28 mm çapındaki iki farklı şekilde (kısa ve uzun boyunlu) tasarlanmış seramik başlar, 85 yaşındaki bir insanın yürüme koşulu altında maruz kaldığı maksimum yük altında sonlu elemanlar analizi (SEA) ile gerilme dağılımı test edildi. Katı modellemesi yapılmış femur ve protezlere önce ağ örgüsü oluşturulmuş (~75000 düğüm ve ~50000 eleman) ve literatürden elde edilen malzeme özellikleri modele atanmıştır Solidworks simülasyonundan elde edilen SEA sonuçları, uzun boyunlu seramik başın konik-delik temas bölgesinde zaman içinde yorulma kırılmasına yol açabilecek yaklaşık 5 kat daha fazla lokal gerilme yoğunlaşmasının varlığını göstermiştir. Bu sonuç tasarım faktörünün, üretim kusurunun ötesinde uzun boyunlu seramik başların daha yüksek kırılma oranına katkıda bulunabileceğini göstermektedir. Bu nedenle, tasarım faktörleriyle alakalı olan seramik başlar üzerindeki bu tür lokal gerilme yoğunlaşma alanlarının varlığı, yeni seramik femur başlarının tasarımı ve üretimi sırasında daima dikkate alınmalıdır.

Investigation of Contribution of Design to the High Fracture Rate of Long Neck Ceramic Femoral Head Prosthesis by Finite Element Analysis

Having a superior wear resistance, ceramics have been among the best options of material for femoral head prosthesis of young patients. However, the inherent disadvantage of ceramics is their brittleness. Therefore, the production and design factors of ceramic femoral heads should be considered carefully. Otherwise, it may cause more serious problem such as in the example of recalling event of ceramic femoral heads in 2001 due to the high fracture rate. Although the high fracture rate of these recalled ceramics heads were primarily associated with an alteration in a manufacturing process, why the long neck designed ceramic heads produced in the same batch had higher fracture rate compared to short neck designed ceramic heads have not been fully identified and there have been no mechanical analysis on it. The purpose of this study was to analyze the stress distribution on two different ceramic femoral heads (short and long neck ceramic heads) using finite element analysis to identify the possible contribution of design factor to the higher fracture rate of long neck ceramic femoral heads. Two different designed ceramic heads with 28-mm diameter were analyzed by finite element analysis (FEA) in a femur under maximum walking load conditions of 85-year old person Solid modeled femurs and prostheses were first meshed (~ 75000 nodes and ~ 50000 elements) and the material properties obtained from the literature were assigned to the model.. The FEA results obtained from Solidworks simulation showed 5-times higher local stress concentration on long neck design which may lead to a fatigue fracture over time on the taper-bore contact area of long neck ceramic head, suggesting that design factor may also contribute to the higher fracture rate of long neck ceramic heads beyond manufacturing defect. Therefore, the presence of such local stress concentration areas on ceramic heads related to design factors should always be taken into account during the design and manufacture of the new ceramic femoral heads.

___

  • [1] S. E. Hohler, "Minimally invasive total hip arthroplasty," AORN journal, vol. 79, pp. 1243-1258, 2004.
  • [2] X.-W. Liu, Y. Zi, L.-B. Xiang, and Y. Wang, "Total hip arthroplasty: areview of advances, advantages and limitations," International journal of clinical and experimental medicine, vol. 8, p. 27, 2015.
  • [3] O. Ethgen, O. Bruyere, F. Richy, C. Dardennes, and J.-Y. Reginster, "Health-related quality of life in total hip and total knee arthroplasty: a qualitative and systematic review of the literature," JBJS, vol. 86, pp. 963-974, 2004.
  • [4] R. Pivec, A. J. Johnson, S. C. Mears, and M. A. Mont, "Hip arthroplasty," The Lancet, vol. 380, pp. 1768- 1777, 2012.
  • [5] S. Petis, J. L. Howard, B. L. Lanting, and E. M. Vasarhelyi, "Surgical approach in primary total hip arthroplasty: anatomy, technique and clinical outcomes," Canadian Journal of Surgery, vol. 58, p. 128, 2015.
  • [6] I. D. Learmonth, C. Young, and C. Rorabeck, "The operation of the century: total hip replacement," The Lancet, vol. 370, pp. 1508-1519, 2007.
  • [7] G. von Lewinski and T. Floerkemeier, "Challenges in Total Hip Arthroplasty," in Biomedical Technology, ed: Springer, 2018, pp. 295-312.
  • [8] N. R. Patel and P. P. Gohil, "A review on biomaterials: scope, applications & human anatomy significance," International Journal of Emerging Technology and Advanced Engineering, vol. 2, pp. 91-101, 2012.
  • [9] M. Navarro, A. Michiardi, O. Castano, and J. Planell, "Biomaterials in orthopaedics," Journal of the royal society interface, vol. 5, pp. 1137-1158, 2008.
  • [10] M. Merola and S. Affatato, "Materials for Hip Prostheses: A Review of Wear and Loading Considerations," Materials, vol. 12, p. 495, 2019.
  • [11] L. Zagra and E. Gallazzi, "Bearing surfaces in primary total hip arthroplasty," EFORT open reviews, vol. 3, pp. 217-224, 2018.
  • [12] L. A. Beaupre, A. Al-Houkail, and D. W. C. Johnston, "A randomized trial comparing ceramic-onceramic bearing vs ceramic-on-crossfire-polyethylene bearing surfaces in total hip arthroplasty," J Arthroplasty, vol. 31, pp. 1240-1245, 2016.
  • [13] J. A. D'antonio and K. Sutton, "Ceramic materials as bearing surfaces for total hip arthroplasty," JAAOSJournal of the American Academy of Orthopaedic Surgeons, vol. 17, pp. 63-68, 2009.
  • [14] B. E. Bierbaum, J. Nairus, D. Kuesis, J. C. Morrison, and D. Ward, "Ceramic-on-ceramic bearings in total hip arthroplasty," Clinical Orthopaedics and Related Research®, vol. 405, pp. 158-163, 2002.
  • [15] B. McEntire, B. S. Bal, M. Rahaman, J. Chevalier, and G. Pezzotti, "Ceramics and ceramic coatings in orthopaedics," Journal of the European Ceramic Society, vol. 35, pp. 4327-4369, 2015.
  • [16] J. Jeffers and W. Walter, "Ceramic-on-ceramic bearings in hip arthroplasty: state of the art and the future," J Bone Joint Surg Br, vol. 94, pp. 735-745, 2012.
  • [17] Y.-S. Park, S.-K. Hwang, W.-S. Choy, Y.-S. Kim, Y.-W. Moon, and S.-J. Lim, "Ceramic failure after total hip arthroplasty with an alumina-on-alumina bearing," JBJS, vol. 88, pp. 780-787, 2006.
  • [18] J. Rosneck, A. Klika, and W. Barsoum, "A rare complication of ceramic-on-ceramic bearings in total hip arthroplasty," J Arthroplasty, vol. 23, pp. 311-313, 2008.
  • [19] B. Habermann, W. Ewald, M. Rauschmann, L. Zichner, and A. Kurth, "Fracture of ceramic heads in total hip replacement," Archives of orthopaedic and trauma surgery, vol. 126, p. 464, 2006.
  • [20] Y. D. Levy and W. L. Walter, "Complications of Ceramic-on-Ceramic Bearings: Fracture, Stripe Wear, and Squeaking," in Complications after Primary Total Hip Arthroplasty, ed: Springer, 2017, pp. 137-150.
  • [21] R. Rambani, D. M. Kepecs, T. J. Mäkinen, O. A. Safir, A. E. Gross, and P. R. Kuzyk, "Revision total hip arthroplasty for fractured ceramic bearings: a review of best practices for revision cases," J Arthroplasty, vol. 32, pp. 1959-1964, 2017.
  • [22] F. Traina, M. De Fine, A. Di Martino, and C. Faldini, "Fracture of ceramic bearing surfaces following total hip replacement: a systematic review," BioMed research international, vol. 2013, 2013.
  • [23] J. L. Masonis, R. B. Bourne, M. D. Ries, R. W. McCalden, A. Salehi, and D. C. Kelman, "Zirconia femoral head fractures: a clinical and retrieval analysis," J Arthroplasty, vol. 19, pp. 898-905, 2004.
  • [24] J. Chevalier, "What future for zirconia as a biomaterial?," Biomaterials, vol. 27, pp. 535-543, 2006.
  • [25] G. Maccauro, C. Piconi, W. Burger, L. Pilloni, E. De Santis, F. Muratori, and I. Learmonth, "Fracture of a YTZP ceramic femoral head: analysis of a fault," J Bone Joint Surg Br, vol. 86, pp. 1192-1196, 2004.
  • [26] I. Clarke, M. Manaka, D. Green, P. Williams, G. Pezzotti, Y.-H. Kim, M. Ries, N. Sugano, L. Sedel, and C. Delauney, "Current status of zirconia used in total hip implants," JBJS, vol. 85, pp. 73-84, 2003.
  • [27] C. Piconi, G. Maccauro, L. Pilloni, W. Burger, F. Muratori, and H. Richter, "On the fracture of a zirconia ball head," Journal of Materials Science: Materials in Medicine, vol. 17, pp. 289-300, 2006.
  • [28] E. C. Panagiotopoulos, A. G. Kallivokas, I. Koulioumpas, and D. E. Mouzakis, "Early failure of a zirconia femoral head prosthesis: fracture or fatigue?," Clinical Biomechanics, vol. 22, pp. 856-860, 2007.
  • [29] M. Heller, G. Bergmann, J.-P. Kassi, L. Claes, N. Haas, and G. Duda, "Determination of muscle loading at the hip joint for use in pre-clinical testing," J Biomech, vol. 38, pp. 1155-1163, 2005.
  • [30] B.-A. Behrens, C. Wirth, H. Windhagen, I. Nolte, A. Meyer-Lindenberg, and A. Bouguecha, "Numerical investigations of stress shielding in total hip prostheses," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 222, pp. 593- 600, 2008.
  • [31] D. T. Reilly, A. H. Burstein, and V. H. Frankel, "The elastic modulus for bone," J Biomech, vol. 7, pp. 271- 275, 1974.
  • [32] A. H. Abdullah, M. MohdAsri, M. S. Alias, and G. Tardan, "Finite element analysis of cemented Hip arthroplasty: influence of stem tapers," in Proceedings of the international Multi Conference of engineering and computer scientists, 2010.
  • [33] M. Borba, M. D. de Araújo, E. de Lima, H. N. Yoshimura, P. F. Cesar, J. A. Griggs, and Á. Della Bona, "Flexural strength and failure modes of layered ceramic structures," Dental Materials, vol. 27, pp. 1259-1266, 2011.
  • [34] C. Piconi and G. Maccauro, "Zirconia as a ceramic biomaterial," Biomaterials, vol. 20, pp. 1-25, 1999.
  • [35] K.-H. Koo, Y.-C. Ha, W. H. Jung, S.-R. Kim, J. J. Yoo, and H. J. Kim, "Isolated fracture of the ceramic head after third-generation alumina-on-alumina total hip arthroplasty," JBJS, vol. 90, pp. 329-336, 2008.
  • [36] B. R. Burroughs, B. Hallstrom, G. J. Golladay, D. Hoeffel, and W. H. Harris, "Range of motion and stability in total hip arthroplasty with 28-, 32-, 38-, and 44-mm femoral head sizes: an in vitro study," J Arthroplasty, vol. 20, pp. 11- 19, 2005.
ACADEMIC PLATFORM-JOURNAL OF ENGINEERING AND SCIENCE-Cover
  • ISSN: 2147-4575
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Akademik Perspektif Derneği